Termination w.r.t. Q of the following Term Rewriting System could be proven:

Q restricted rewrite system:
The TRS R consists of the following rules:

cond1(true, x, y) → cond2(gr(x, y), x, y)
cond2(true, x, y) → cond1(gr(add(x, y), 0), p(x), y)
cond2(false, x, y) → cond3(eq(x, y), x, y)
cond3(true, x, y) → cond1(gr(add(x, y), 0), p(x), y)
cond3(false, x, y) → cond1(gr(add(x, y), 0), x, p(y))
gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
add(0, x) → x
add(s(x), y) → s(add(x, y))
eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
p(0) → 0
p(s(x)) → x

Q is empty.


QTRS
  ↳ AAECC Innermost

Q restricted rewrite system:
The TRS R consists of the following rules:

cond1(true, x, y) → cond2(gr(x, y), x, y)
cond2(true, x, y) → cond1(gr(add(x, y), 0), p(x), y)
cond2(false, x, y) → cond3(eq(x, y), x, y)
cond3(true, x, y) → cond1(gr(add(x, y), 0), p(x), y)
cond3(false, x, y) → cond1(gr(add(x, y), 0), x, p(y))
gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
add(0, x) → x
add(s(x), y) → s(add(x, y))
eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
p(0) → 0
p(s(x)) → x

Q is empty.

We have applied [19,8] to switch to innermost. The TRS R 1 is

gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
add(0, x) → x
add(s(x), y) → s(add(x, y))
eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
p(0) → 0
p(s(x)) → x

The TRS R 2 is

cond1(true, x, y) → cond2(gr(x, y), x, y)
cond2(true, x, y) → cond1(gr(add(x, y), 0), p(x), y)
cond2(false, x, y) → cond3(eq(x, y), x, y)
cond3(true, x, y) → cond1(gr(add(x, y), 0), p(x), y)
cond3(false, x, y) → cond1(gr(add(x, y), 0), x, p(y))

The signature Sigma is {cond1, cond2, cond3}

↳ QTRS
  ↳ AAECC Innermost
QTRS
      ↳ DependencyPairsProof

Q restricted rewrite system:
The TRS R consists of the following rules:

cond1(true, x, y) → cond2(gr(x, y), x, y)
cond2(true, x, y) → cond1(gr(add(x, y), 0), p(x), y)
cond2(false, x, y) → cond3(eq(x, y), x, y)
cond3(true, x, y) → cond1(gr(add(x, y), 0), p(x), y)
cond3(false, x, y) → cond1(gr(add(x, y), 0), x, p(y))
gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
add(0, x) → x
add(s(x), y) → s(add(x, y))
eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
p(0) → 0
p(s(x)) → x

The set Q consists of the following terms:

cond1(true, x0, x1)
cond2(true, x0, x1)
cond2(false, x0, x1)
cond3(true, x0, x1)
cond3(false, x0, x1)
gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
add(0, x0)
add(s(x0), x1)
eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
p(0)
p(s(x0))


Using Dependency Pairs [1,15] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:

COND2(false, x, y) → EQ(x, y)
COND3(false, x, y) → ADD(x, y)
COND2(true, x, y) → GR(add(x, y), 0)
COND2(true, x, y) → P(x)
COND3(true, x, y) → ADD(x, y)
COND3(false, x, y) → COND1(gr(add(x, y), 0), x, p(y))
COND3(false, x, y) → GR(add(x, y), 0)
COND1(true, x, y) → COND2(gr(x, y), x, y)
COND3(true, x, y) → GR(add(x, y), 0)
COND3(false, x, y) → P(y)
COND2(false, x, y) → COND3(eq(x, y), x, y)
COND3(true, x, y) → P(x)
EQ(s(x), s(y)) → EQ(x, y)
ADD(s(x), y) → ADD(x, y)
COND2(true, x, y) → COND1(gr(add(x, y), 0), p(x), y)
COND2(true, x, y) → ADD(x, y)
COND3(true, x, y) → COND1(gr(add(x, y), 0), p(x), y)
GR(s(x), s(y)) → GR(x, y)
COND1(true, x, y) → GR(x, y)

The TRS R consists of the following rules:

cond1(true, x, y) → cond2(gr(x, y), x, y)
cond2(true, x, y) → cond1(gr(add(x, y), 0), p(x), y)
cond2(false, x, y) → cond3(eq(x, y), x, y)
cond3(true, x, y) → cond1(gr(add(x, y), 0), p(x), y)
cond3(false, x, y) → cond1(gr(add(x, y), 0), x, p(y))
gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
add(0, x) → x
add(s(x), y) → s(add(x, y))
eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
p(0) → 0
p(s(x)) → x

The set Q consists of the following terms:

cond1(true, x0, x1)
cond2(true, x0, x1)
cond2(false, x0, x1)
cond3(true, x0, x1)
cond3(false, x0, x1)
gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
add(0, x0)
add(s(x0), x1)
eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
p(0)
p(s(x0))

We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ AAECC Innermost
    ↳ QTRS
      ↳ DependencyPairsProof
QDP
          ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

COND2(false, x, y) → EQ(x, y)
COND3(false, x, y) → ADD(x, y)
COND2(true, x, y) → GR(add(x, y), 0)
COND2(true, x, y) → P(x)
COND3(true, x, y) → ADD(x, y)
COND3(false, x, y) → COND1(gr(add(x, y), 0), x, p(y))
COND3(false, x, y) → GR(add(x, y), 0)
COND1(true, x, y) → COND2(gr(x, y), x, y)
COND3(true, x, y) → GR(add(x, y), 0)
COND3(false, x, y) → P(y)
COND2(false, x, y) → COND3(eq(x, y), x, y)
COND3(true, x, y) → P(x)
EQ(s(x), s(y)) → EQ(x, y)
ADD(s(x), y) → ADD(x, y)
COND2(true, x, y) → COND1(gr(add(x, y), 0), p(x), y)
COND2(true, x, y) → ADD(x, y)
COND3(true, x, y) → COND1(gr(add(x, y), 0), p(x), y)
GR(s(x), s(y)) → GR(x, y)
COND1(true, x, y) → GR(x, y)

The TRS R consists of the following rules:

cond1(true, x, y) → cond2(gr(x, y), x, y)
cond2(true, x, y) → cond1(gr(add(x, y), 0), p(x), y)
cond2(false, x, y) → cond3(eq(x, y), x, y)
cond3(true, x, y) → cond1(gr(add(x, y), 0), p(x), y)
cond3(false, x, y) → cond1(gr(add(x, y), 0), x, p(y))
gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
add(0, x) → x
add(s(x), y) → s(add(x, y))
eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
p(0) → 0
p(s(x)) → x

The set Q consists of the following terms:

cond1(true, x0, x1)
cond2(true, x0, x1)
cond2(false, x0, x1)
cond3(true, x0, x1)
cond3(false, x0, x1)
gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
add(0, x0)
add(s(x0), x1)
eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
p(0)
p(s(x0))

We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 4 SCCs with 11 less nodes.

↳ QTRS
  ↳ AAECC Innermost
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
QDP
                ↳ UsableRulesProof
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

EQ(s(x), s(y)) → EQ(x, y)

The TRS R consists of the following rules:

cond1(true, x, y) → cond2(gr(x, y), x, y)
cond2(true, x, y) → cond1(gr(add(x, y), 0), p(x), y)
cond2(false, x, y) → cond3(eq(x, y), x, y)
cond3(true, x, y) → cond1(gr(add(x, y), 0), p(x), y)
cond3(false, x, y) → cond1(gr(add(x, y), 0), x, p(y))
gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
add(0, x) → x
add(s(x), y) → s(add(x, y))
eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
p(0) → 0
p(s(x)) → x

The set Q consists of the following terms:

cond1(true, x0, x1)
cond2(true, x0, x1)
cond2(false, x0, x1)
cond3(true, x0, x1)
cond3(false, x0, x1)
gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
add(0, x0)
add(s(x0), x1)
eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
p(0)
p(s(x0))

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [15] we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ AAECC Innermost
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
                ↳ UsableRulesProof
QDP
                    ↳ QReductionProof
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

EQ(s(x), s(y)) → EQ(x, y)

R is empty.
The set Q consists of the following terms:

cond1(true, x0, x1)
cond2(true, x0, x1)
cond2(false, x0, x1)
cond3(true, x0, x1)
cond3(false, x0, x1)
gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
add(0, x0)
add(s(x0), x1)
eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
p(0)
p(s(x0))

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.

cond1(true, x0, x1)
cond2(true, x0, x1)
cond2(false, x0, x1)
cond3(true, x0, x1)
cond3(false, x0, x1)
gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
add(0, x0)
add(s(x0), x1)
eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
p(0)
p(s(x0))



↳ QTRS
  ↳ AAECC Innermost
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
QDP
                        ↳ QDPSizeChangeProof
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

EQ(s(x), s(y)) → EQ(x, y)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ QTRS
  ↳ AAECC Innermost
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
QDP
                ↳ UsableRulesProof
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

ADD(s(x), y) → ADD(x, y)

The TRS R consists of the following rules:

cond1(true, x, y) → cond2(gr(x, y), x, y)
cond2(true, x, y) → cond1(gr(add(x, y), 0), p(x), y)
cond2(false, x, y) → cond3(eq(x, y), x, y)
cond3(true, x, y) → cond1(gr(add(x, y), 0), p(x), y)
cond3(false, x, y) → cond1(gr(add(x, y), 0), x, p(y))
gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
add(0, x) → x
add(s(x), y) → s(add(x, y))
eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
p(0) → 0
p(s(x)) → x

The set Q consists of the following terms:

cond1(true, x0, x1)
cond2(true, x0, x1)
cond2(false, x0, x1)
cond3(true, x0, x1)
cond3(false, x0, x1)
gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
add(0, x0)
add(s(x0), x1)
eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
p(0)
p(s(x0))

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [15] we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ AAECC Innermost
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
QDP
                    ↳ QReductionProof
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

ADD(s(x), y) → ADD(x, y)

R is empty.
The set Q consists of the following terms:

cond1(true, x0, x1)
cond2(true, x0, x1)
cond2(false, x0, x1)
cond3(true, x0, x1)
cond3(false, x0, x1)
gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
add(0, x0)
add(s(x0), x1)
eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
p(0)
p(s(x0))

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.

cond1(true, x0, x1)
cond2(true, x0, x1)
cond2(false, x0, x1)
cond3(true, x0, x1)
cond3(false, x0, x1)
gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
add(0, x0)
add(s(x0), x1)
eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
p(0)
p(s(x0))



↳ QTRS
  ↳ AAECC Innermost
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
QDP
                        ↳ QDPSizeChangeProof
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

ADD(s(x), y) → ADD(x, y)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ QTRS
  ↳ AAECC Innermost
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
QDP
                ↳ UsableRulesProof
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

GR(s(x), s(y)) → GR(x, y)

The TRS R consists of the following rules:

cond1(true, x, y) → cond2(gr(x, y), x, y)
cond2(true, x, y) → cond1(gr(add(x, y), 0), p(x), y)
cond2(false, x, y) → cond3(eq(x, y), x, y)
cond3(true, x, y) → cond1(gr(add(x, y), 0), p(x), y)
cond3(false, x, y) → cond1(gr(add(x, y), 0), x, p(y))
gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
add(0, x) → x
add(s(x), y) → s(add(x, y))
eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
p(0) → 0
p(s(x)) → x

The set Q consists of the following terms:

cond1(true, x0, x1)
cond2(true, x0, x1)
cond2(false, x0, x1)
cond3(true, x0, x1)
cond3(false, x0, x1)
gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
add(0, x0)
add(s(x0), x1)
eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
p(0)
p(s(x0))

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [15] we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ AAECC Innermost
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
QDP
                    ↳ QReductionProof
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

GR(s(x), s(y)) → GR(x, y)

R is empty.
The set Q consists of the following terms:

cond1(true, x0, x1)
cond2(true, x0, x1)
cond2(false, x0, x1)
cond3(true, x0, x1)
cond3(false, x0, x1)
gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
add(0, x0)
add(s(x0), x1)
eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
p(0)
p(s(x0))

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.

cond1(true, x0, x1)
cond2(true, x0, x1)
cond2(false, x0, x1)
cond3(true, x0, x1)
cond3(false, x0, x1)
gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
add(0, x0)
add(s(x0), x1)
eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
p(0)
p(s(x0))



↳ QTRS
  ↳ AAECC Innermost
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
QDP
                        ↳ QDPSizeChangeProof
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

GR(s(x), s(y)) → GR(x, y)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ QTRS
  ↳ AAECC Innermost
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
QDP
                ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

COND1(true, x, y) → COND2(gr(x, y), x, y)
COND2(false, x, y) → COND3(eq(x, y), x, y)
COND2(true, x, y) → COND1(gr(add(x, y), 0), p(x), y)
COND3(true, x, y) → COND1(gr(add(x, y), 0), p(x), y)
COND3(false, x, y) → COND1(gr(add(x, y), 0), x, p(y))

The TRS R consists of the following rules:

cond1(true, x, y) → cond2(gr(x, y), x, y)
cond2(true, x, y) → cond1(gr(add(x, y), 0), p(x), y)
cond2(false, x, y) → cond3(eq(x, y), x, y)
cond3(true, x, y) → cond1(gr(add(x, y), 0), p(x), y)
cond3(false, x, y) → cond1(gr(add(x, y), 0), x, p(y))
gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
add(0, x) → x
add(s(x), y) → s(add(x, y))
eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
p(0) → 0
p(s(x)) → x

The set Q consists of the following terms:

cond1(true, x0, x1)
cond2(true, x0, x1)
cond2(false, x0, x1)
cond3(true, x0, x1)
cond3(false, x0, x1)
gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
add(0, x0)
add(s(x0), x1)
eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
p(0)
p(s(x0))

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [15] we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ AAECC Innermost
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
QDP
                    ↳ QReductionProof

Q DP problem:
The TRS P consists of the following rules:

COND1(true, x, y) → COND2(gr(x, y), x, y)
COND2(false, x, y) → COND3(eq(x, y), x, y)
COND2(true, x, y) → COND1(gr(add(x, y), 0), p(x), y)
COND3(true, x, y) → COND1(gr(add(x, y), 0), p(x), y)
COND3(false, x, y) → COND1(gr(add(x, y), 0), x, p(y))

The TRS R consists of the following rules:

add(0, x) → x
add(s(x), y) → s(add(x, y))
gr(0, x) → false
gr(s(x), 0) → true
p(0) → 0
p(s(x)) → x
gr(s(x), s(y)) → gr(x, y)
eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)

The set Q consists of the following terms:

cond1(true, x0, x1)
cond2(true, x0, x1)
cond2(false, x0, x1)
cond3(true, x0, x1)
cond3(false, x0, x1)
gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
add(0, x0)
add(s(x0), x1)
eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
p(0)
p(s(x0))

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.

cond1(true, x0, x1)
cond2(true, x0, x1)
cond2(false, x0, x1)
cond3(true, x0, x1)
cond3(false, x0, x1)



↳ QTRS
  ↳ AAECC Innermost
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
QDP
                        ↳ Narrowing

Q DP problem:
The TRS P consists of the following rules:

COND1(true, x, y) → COND2(gr(x, y), x, y)
COND2(false, x, y) → COND3(eq(x, y), x, y)
COND2(true, x, y) → COND1(gr(add(x, y), 0), p(x), y)
COND3(true, x, y) → COND1(gr(add(x, y), 0), p(x), y)
COND3(false, x, y) → COND1(gr(add(x, y), 0), x, p(y))

The TRS R consists of the following rules:

add(0, x) → x
add(s(x), y) → s(add(x, y))
gr(0, x) → false
gr(s(x), 0) → true
p(0) → 0
p(s(x)) → x
gr(s(x), s(y)) → gr(x, y)
eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)

The set Q consists of the following terms:

gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
add(0, x0)
add(s(x0), x1)
eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
p(0)
p(s(x0))

We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule COND1(true, x, y) → COND2(gr(x, y), x, y) at position [0] we obtained the following new rules:

COND1(true, 0, x0) → COND2(false, 0, x0)
COND1(true, s(x0), s(x1)) → COND2(gr(x0, x1), s(x0), s(x1))
COND1(true, s(x0), 0) → COND2(true, s(x0), 0)



↳ QTRS
  ↳ AAECC Innermost
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Narrowing
QDP
                            ↳ Narrowing

Q DP problem:
The TRS P consists of the following rules:

COND1(true, s(x0), s(x1)) → COND2(gr(x0, x1), s(x0), s(x1))
COND2(false, x, y) → COND3(eq(x, y), x, y)
COND1(true, 0, x0) → COND2(false, 0, x0)
COND2(true, x, y) → COND1(gr(add(x, y), 0), p(x), y)
COND3(true, x, y) → COND1(gr(add(x, y), 0), p(x), y)
COND1(true, s(x0), 0) → COND2(true, s(x0), 0)
COND3(false, x, y) → COND1(gr(add(x, y), 0), x, p(y))

The TRS R consists of the following rules:

add(0, x) → x
add(s(x), y) → s(add(x, y))
gr(0, x) → false
gr(s(x), 0) → true
p(0) → 0
p(s(x)) → x
gr(s(x), s(y)) → gr(x, y)
eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)

The set Q consists of the following terms:

gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
add(0, x0)
add(s(x0), x1)
eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
p(0)
p(s(x0))

We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule COND2(false, x, y) → COND3(eq(x, y), x, y) at position [0] we obtained the following new rules:

COND2(false, s(x0), s(x1)) → COND3(eq(x0, x1), s(x0), s(x1))
COND2(false, s(x0), 0) → COND3(false, s(x0), 0)
COND2(false, 0, s(x0)) → COND3(false, 0, s(x0))
COND2(false, 0, 0) → COND3(true, 0, 0)



↳ QTRS
  ↳ AAECC Innermost
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Narrowing
QDP
                                ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

COND2(false, s(x0), s(x1)) → COND3(eq(x0, x1), s(x0), s(x1))
COND1(true, s(x0), s(x1)) → COND2(gr(x0, x1), s(x0), s(x1))
COND1(true, 0, x0) → COND2(false, 0, x0)
COND2(true, x, y) → COND1(gr(add(x, y), 0), p(x), y)
COND3(true, x, y) → COND1(gr(add(x, y), 0), p(x), y)
COND2(false, 0, s(x0)) → COND3(false, 0, s(x0))
COND2(false, s(x0), 0) → COND3(false, s(x0), 0)
COND2(false, 0, 0) → COND3(true, 0, 0)
COND1(true, s(x0), 0) → COND2(true, s(x0), 0)
COND3(false, x, y) → COND1(gr(add(x, y), 0), x, p(y))

The TRS R consists of the following rules:

add(0, x) → x
add(s(x), y) → s(add(x, y))
gr(0, x) → false
gr(s(x), 0) → true
p(0) → 0
p(s(x)) → x
gr(s(x), s(y)) → gr(x, y)
eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)

The set Q consists of the following terms:

gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
add(0, x0)
add(s(x0), x1)
eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
p(0)
p(s(x0))

We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 1 less node.

↳ QTRS
  ↳ AAECC Innermost
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Narrowing
                              ↳ QDP
                                ↳ DependencyGraphProof
QDP
                                    ↳ Narrowing

Q DP problem:
The TRS P consists of the following rules:

COND2(false, s(x0), s(x1)) → COND3(eq(x0, x1), s(x0), s(x1))
COND1(true, s(x0), s(x1)) → COND2(gr(x0, x1), s(x0), s(x1))
COND1(true, 0, x0) → COND2(false, 0, x0)
COND2(true, x, y) → COND1(gr(add(x, y), 0), p(x), y)
COND3(true, x, y) → COND1(gr(add(x, y), 0), p(x), y)
COND2(false, 0, s(x0)) → COND3(false, 0, s(x0))
COND2(false, 0, 0) → COND3(true, 0, 0)
COND1(true, s(x0), 0) → COND2(true, s(x0), 0)
COND3(false, x, y) → COND1(gr(add(x, y), 0), x, p(y))

The TRS R consists of the following rules:

add(0, x) → x
add(s(x), y) → s(add(x, y))
gr(0, x) → false
gr(s(x), 0) → true
p(0) → 0
p(s(x)) → x
gr(s(x), s(y)) → gr(x, y)
eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)

The set Q consists of the following terms:

gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
add(0, x0)
add(s(x0), x1)
eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
p(0)
p(s(x0))

We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule COND3(false, x, y) → COND1(gr(add(x, y), 0), x, p(y)) at position [0] we obtained the following new rules:

COND3(false, 0, x0) → COND1(gr(x0, 0), 0, p(x0))
COND3(false, s(x0), x1) → COND1(gr(s(add(x0, x1)), 0), s(x0), p(x1))



↳ QTRS
  ↳ AAECC Innermost
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Narrowing
                              ↳ QDP
                                ↳ DependencyGraphProof
                                  ↳ QDP
                                    ↳ Narrowing
QDP
                                        ↳ Rewriting

Q DP problem:
The TRS P consists of the following rules:

COND2(false, s(x0), s(x1)) → COND3(eq(x0, x1), s(x0), s(x1))
COND3(false, 0, x0) → COND1(gr(x0, 0), 0, p(x0))
COND1(true, s(x0), s(x1)) → COND2(gr(x0, x1), s(x0), s(x1))
COND1(true, 0, x0) → COND2(false, 0, x0)
COND2(true, x, y) → COND1(gr(add(x, y), 0), p(x), y)
COND3(true, x, y) → COND1(gr(add(x, y), 0), p(x), y)
COND3(false, s(x0), x1) → COND1(gr(s(add(x0, x1)), 0), s(x0), p(x1))
COND2(false, 0, s(x0)) → COND3(false, 0, s(x0))
COND1(true, s(x0), 0) → COND2(true, s(x0), 0)
COND2(false, 0, 0) → COND3(true, 0, 0)

The TRS R consists of the following rules:

add(0, x) → x
add(s(x), y) → s(add(x, y))
gr(0, x) → false
gr(s(x), 0) → true
p(0) → 0
p(s(x)) → x
gr(s(x), s(y)) → gr(x, y)
eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)

The set Q consists of the following terms:

gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
add(0, x0)
add(s(x0), x1)
eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
p(0)
p(s(x0))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [15] the rule COND3(false, s(x0), x1) → COND1(gr(s(add(x0, x1)), 0), s(x0), p(x1)) at position [0] we obtained the following new rules:

COND3(false, s(x0), x1) → COND1(true, s(x0), p(x1))



↳ QTRS
  ↳ AAECC Innermost
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Narrowing
                              ↳ QDP
                                ↳ DependencyGraphProof
                                  ↳ QDP
                                    ↳ Narrowing
                                      ↳ QDP
                                        ↳ Rewriting
QDP
                                            ↳ Narrowing

Q DP problem:
The TRS P consists of the following rules:

COND3(false, s(x0), x1) → COND1(true, s(x0), p(x1))
COND2(false, s(x0), s(x1)) → COND3(eq(x0, x1), s(x0), s(x1))
COND3(false, 0, x0) → COND1(gr(x0, 0), 0, p(x0))
COND1(true, s(x0), s(x1)) → COND2(gr(x0, x1), s(x0), s(x1))
COND1(true, 0, x0) → COND2(false, 0, x0)
COND2(true, x, y) → COND1(gr(add(x, y), 0), p(x), y)
COND3(true, x, y) → COND1(gr(add(x, y), 0), p(x), y)
COND2(false, 0, s(x0)) → COND3(false, 0, s(x0))
COND2(false, 0, 0) → COND3(true, 0, 0)
COND1(true, s(x0), 0) → COND2(true, s(x0), 0)

The TRS R consists of the following rules:

add(0, x) → x
add(s(x), y) → s(add(x, y))
gr(0, x) → false
gr(s(x), 0) → true
p(0) → 0
p(s(x)) → x
gr(s(x), s(y)) → gr(x, y)
eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)

The set Q consists of the following terms:

gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
add(0, x0)
add(s(x0), x1)
eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
p(0)
p(s(x0))

We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule COND2(true, x, y) → COND1(gr(add(x, y), 0), p(x), y) at position [0] we obtained the following new rules:

COND2(true, 0, x0) → COND1(gr(x0, 0), p(0), x0)
COND2(true, s(x0), x1) → COND1(gr(s(add(x0, x1)), 0), p(s(x0)), x1)



↳ QTRS
  ↳ AAECC Innermost
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Narrowing
                              ↳ QDP
                                ↳ DependencyGraphProof
                                  ↳ QDP
                                    ↳ Narrowing
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Narrowing
QDP
                                                ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

COND2(true, 0, x0) → COND1(gr(x0, 0), p(0), x0)
COND2(false, s(x0), s(x1)) → COND3(eq(x0, x1), s(x0), s(x1))
COND3(false, s(x0), x1) → COND1(true, s(x0), p(x1))
COND3(false, 0, x0) → COND1(gr(x0, 0), 0, p(x0))
COND1(true, s(x0), s(x1)) → COND2(gr(x0, x1), s(x0), s(x1))
COND2(true, s(x0), x1) → COND1(gr(s(add(x0, x1)), 0), p(s(x0)), x1)
COND1(true, 0, x0) → COND2(false, 0, x0)
COND3(true, x, y) → COND1(gr(add(x, y), 0), p(x), y)
COND2(false, 0, s(x0)) → COND3(false, 0, s(x0))
COND1(true, s(x0), 0) → COND2(true, s(x0), 0)
COND2(false, 0, 0) → COND3(true, 0, 0)

The TRS R consists of the following rules:

add(0, x) → x
add(s(x), y) → s(add(x, y))
gr(0, x) → false
gr(s(x), 0) → true
p(0) → 0
p(s(x)) → x
gr(s(x), s(y)) → gr(x, y)
eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)

The set Q consists of the following terms:

gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
add(0, x0)
add(s(x0), x1)
eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
p(0)
p(s(x0))

We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 1 less node.

↳ QTRS
  ↳ AAECC Innermost
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Narrowing
                              ↳ QDP
                                ↳ DependencyGraphProof
                                  ↳ QDP
                                    ↳ Narrowing
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Narrowing
                                              ↳ QDP
                                                ↳ DependencyGraphProof
QDP
                                                    ↳ Rewriting

Q DP problem:
The TRS P consists of the following rules:

COND3(false, s(x0), x1) → COND1(true, s(x0), p(x1))
COND2(false, s(x0), s(x1)) → COND3(eq(x0, x1), s(x0), s(x1))
COND3(false, 0, x0) → COND1(gr(x0, 0), 0, p(x0))
COND1(true, s(x0), s(x1)) → COND2(gr(x0, x1), s(x0), s(x1))
COND2(true, s(x0), x1) → COND1(gr(s(add(x0, x1)), 0), p(s(x0)), x1)
COND1(true, 0, x0) → COND2(false, 0, x0)
COND3(true, x, y) → COND1(gr(add(x, y), 0), p(x), y)
COND2(false, 0, s(x0)) → COND3(false, 0, s(x0))
COND1(true, s(x0), 0) → COND2(true, s(x0), 0)
COND2(false, 0, 0) → COND3(true, 0, 0)

The TRS R consists of the following rules:

add(0, x) → x
add(s(x), y) → s(add(x, y))
gr(0, x) → false
gr(s(x), 0) → true
p(0) → 0
p(s(x)) → x
gr(s(x), s(y)) → gr(x, y)
eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)

The set Q consists of the following terms:

gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
add(0, x0)
add(s(x0), x1)
eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
p(0)
p(s(x0))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [15] the rule COND2(true, s(x0), x1) → COND1(gr(s(add(x0, x1)), 0), p(s(x0)), x1) at position [0] we obtained the following new rules:

COND2(true, s(x0), x1) → COND1(true, p(s(x0)), x1)



↳ QTRS
  ↳ AAECC Innermost
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Narrowing
                              ↳ QDP
                                ↳ DependencyGraphProof
                                  ↳ QDP
                                    ↳ Narrowing
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Narrowing
                                              ↳ QDP
                                                ↳ DependencyGraphProof
                                                  ↳ QDP
                                                    ↳ Rewriting
QDP
                                                        ↳ Rewriting

Q DP problem:
The TRS P consists of the following rules:

COND2(false, s(x0), s(x1)) → COND3(eq(x0, x1), s(x0), s(x1))
COND3(false, s(x0), x1) → COND1(true, s(x0), p(x1))
COND3(false, 0, x0) → COND1(gr(x0, 0), 0, p(x0))
COND1(true, s(x0), s(x1)) → COND2(gr(x0, x1), s(x0), s(x1))
COND1(true, 0, x0) → COND2(false, 0, x0)
COND2(true, s(x0), x1) → COND1(true, p(s(x0)), x1)
COND3(true, x, y) → COND1(gr(add(x, y), 0), p(x), y)
COND2(false, 0, s(x0)) → COND3(false, 0, s(x0))
COND2(false, 0, 0) → COND3(true, 0, 0)
COND1(true, s(x0), 0) → COND2(true, s(x0), 0)

The TRS R consists of the following rules:

add(0, x) → x
add(s(x), y) → s(add(x, y))
gr(0, x) → false
gr(s(x), 0) → true
p(0) → 0
p(s(x)) → x
gr(s(x), s(y)) → gr(x, y)
eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)

The set Q consists of the following terms:

gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
add(0, x0)
add(s(x0), x1)
eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
p(0)
p(s(x0))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [15] the rule COND2(true, s(x0), x1) → COND1(true, p(s(x0)), x1) at position [1] we obtained the following new rules:

COND2(true, s(x0), x1) → COND1(true, x0, x1)



↳ QTRS
  ↳ AAECC Innermost
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Narrowing
                              ↳ QDP
                                ↳ DependencyGraphProof
                                  ↳ QDP
                                    ↳ Narrowing
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Narrowing
                                              ↳ QDP
                                                ↳ DependencyGraphProof
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
QDP
                                                            ↳ Narrowing

Q DP problem:
The TRS P consists of the following rules:

COND3(false, s(x0), x1) → COND1(true, s(x0), p(x1))
COND2(false, s(x0), s(x1)) → COND3(eq(x0, x1), s(x0), s(x1))
COND3(false, 0, x0) → COND1(gr(x0, 0), 0, p(x0))
COND1(true, s(x0), s(x1)) → COND2(gr(x0, x1), s(x0), s(x1))
COND1(true, 0, x0) → COND2(false, 0, x0)
COND3(true, x, y) → COND1(gr(add(x, y), 0), p(x), y)
COND2(true, s(x0), x1) → COND1(true, x0, x1)
COND2(false, 0, s(x0)) → COND3(false, 0, s(x0))
COND1(true, s(x0), 0) → COND2(true, s(x0), 0)
COND2(false, 0, 0) → COND3(true, 0, 0)

The TRS R consists of the following rules:

add(0, x) → x
add(s(x), y) → s(add(x, y))
gr(0, x) → false
gr(s(x), 0) → true
p(0) → 0
p(s(x)) → x
gr(s(x), s(y)) → gr(x, y)
eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)

The set Q consists of the following terms:

gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
add(0, x0)
add(s(x0), x1)
eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
p(0)
p(s(x0))

We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule COND3(true, x, y) → COND1(gr(add(x, y), 0), p(x), y) at position [0] we obtained the following new rules:

COND3(true, 0, x0) → COND1(gr(x0, 0), p(0), x0)
COND3(true, s(x0), x1) → COND1(gr(s(add(x0, x1)), 0), p(s(x0)), x1)



↳ QTRS
  ↳ AAECC Innermost
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Narrowing
                              ↳ QDP
                                ↳ DependencyGraphProof
                                  ↳ QDP
                                    ↳ Narrowing
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Narrowing
                                              ↳ QDP
                                                ↳ DependencyGraphProof
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Narrowing
QDP
                                                                ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

COND2(false, s(x0), s(x1)) → COND3(eq(x0, x1), s(x0), s(x1))
COND3(false, s(x0), x1) → COND1(true, s(x0), p(x1))
COND3(false, 0, x0) → COND1(gr(x0, 0), 0, p(x0))
COND1(true, s(x0), s(x1)) → COND2(gr(x0, x1), s(x0), s(x1))
COND3(true, 0, x0) → COND1(gr(x0, 0), p(0), x0)
COND1(true, 0, x0) → COND2(false, 0, x0)
COND2(false, 0, s(x0)) → COND3(false, 0, s(x0))
COND2(true, s(x0), x1) → COND1(true, x0, x1)
COND2(false, 0, 0) → COND3(true, 0, 0)
COND1(true, s(x0), 0) → COND2(true, s(x0), 0)
COND3(true, s(x0), x1) → COND1(gr(s(add(x0, x1)), 0), p(s(x0)), x1)

The TRS R consists of the following rules:

add(0, x) → x
add(s(x), y) → s(add(x, y))
gr(0, x) → false
gr(s(x), 0) → true
p(0) → 0
p(s(x)) → x
gr(s(x), s(y)) → gr(x, y)
eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)

The set Q consists of the following terms:

gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
add(0, x0)
add(s(x0), x1)
eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
p(0)
p(s(x0))

We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 2 SCCs.

↳ QTRS
  ↳ AAECC Innermost
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Narrowing
                              ↳ QDP
                                ↳ DependencyGraphProof
                                  ↳ QDP
                                    ↳ Narrowing
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Narrowing
                                              ↳ QDP
                                                ↳ DependencyGraphProof
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Narrowing
                                                              ↳ QDP
                                                                ↳ DependencyGraphProof
                                                                  ↳ AND
QDP
                                                                      ↳ UsableRulesProof
                                                                    ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

COND3(false, 0, x0) → COND1(gr(x0, 0), 0, p(x0))
COND3(true, 0, x0) → COND1(gr(x0, 0), p(0), x0)
COND1(true, 0, x0) → COND2(false, 0, x0)
COND2(false, 0, s(x0)) → COND3(false, 0, s(x0))
COND2(false, 0, 0) → COND3(true, 0, 0)

The TRS R consists of the following rules:

add(0, x) → x
add(s(x), y) → s(add(x, y))
gr(0, x) → false
gr(s(x), 0) → true
p(0) → 0
p(s(x)) → x
gr(s(x), s(y)) → gr(x, y)
eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)

The set Q consists of the following terms:

gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
add(0, x0)
add(s(x0), x1)
eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
p(0)
p(s(x0))

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [15] we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ AAECC Innermost
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Narrowing
                              ↳ QDP
                                ↳ DependencyGraphProof
                                  ↳ QDP
                                    ↳ Narrowing
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Narrowing
                                              ↳ QDP
                                                ↳ DependencyGraphProof
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Narrowing
                                                              ↳ QDP
                                                                ↳ DependencyGraphProof
                                                                  ↳ AND
                                                                    ↳ QDP
                                                                      ↳ UsableRulesProof
QDP
                                                                          ↳ QReductionProof
                                                                    ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

COND3(false, 0, x0) → COND1(gr(x0, 0), 0, p(x0))
COND3(true, 0, x0) → COND1(gr(x0, 0), p(0), x0)
COND1(true, 0, x0) → COND2(false, 0, x0)
COND2(false, 0, s(x0)) → COND3(false, 0, s(x0))
COND2(false, 0, 0) → COND3(true, 0, 0)

The TRS R consists of the following rules:

gr(0, x) → false
gr(s(x), 0) → true
p(0) → 0
p(s(x)) → x

The set Q consists of the following terms:

gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
add(0, x0)
add(s(x0), x1)
eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
p(0)
p(s(x0))

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.

add(0, x0)
add(s(x0), x1)
eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))



↳ QTRS
  ↳ AAECC Innermost
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Narrowing
                              ↳ QDP
                                ↳ DependencyGraphProof
                                  ↳ QDP
                                    ↳ Narrowing
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Narrowing
                                              ↳ QDP
                                                ↳ DependencyGraphProof
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Narrowing
                                                              ↳ QDP
                                                                ↳ DependencyGraphProof
                                                                  ↳ AND
                                                                    ↳ QDP
                                                                      ↳ UsableRulesProof
                                                                        ↳ QDP
                                                                          ↳ QReductionProof
QDP
                                                                              ↳ Rewriting
                                                                    ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

COND3(false, 0, x0) → COND1(gr(x0, 0), 0, p(x0))
COND3(true, 0, x0) → COND1(gr(x0, 0), p(0), x0)
COND1(true, 0, x0) → COND2(false, 0, x0)
COND2(false, 0, s(x0)) → COND3(false, 0, s(x0))
COND2(false, 0, 0) → COND3(true, 0, 0)

The TRS R consists of the following rules:

gr(0, x) → false
gr(s(x), 0) → true
p(0) → 0
p(s(x)) → x

The set Q consists of the following terms:

gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
p(0)
p(s(x0))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [15] the rule COND3(true, 0, x0) → COND1(gr(x0, 0), p(0), x0) at position [1] we obtained the following new rules:

COND3(true, 0, x0) → COND1(gr(x0, 0), 0, x0)



↳ QTRS
  ↳ AAECC Innermost
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Narrowing
                              ↳ QDP
                                ↳ DependencyGraphProof
                                  ↳ QDP
                                    ↳ Narrowing
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Narrowing
                                              ↳ QDP
                                                ↳ DependencyGraphProof
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Narrowing
                                                              ↳ QDP
                                                                ↳ DependencyGraphProof
                                                                  ↳ AND
                                                                    ↳ QDP
                                                                      ↳ UsableRulesProof
                                                                        ↳ QDP
                                                                          ↳ QReductionProof
                                                                            ↳ QDP
                                                                              ↳ Rewriting
QDP
                                                                                  ↳ Narrowing
                                                                    ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

COND3(false, 0, x0) → COND1(gr(x0, 0), 0, p(x0))
COND3(true, 0, x0) → COND1(gr(x0, 0), 0, x0)
COND1(true, 0, x0) → COND2(false, 0, x0)
COND2(false, 0, s(x0)) → COND3(false, 0, s(x0))
COND2(false, 0, 0) → COND3(true, 0, 0)

The TRS R consists of the following rules:

gr(0, x) → false
gr(s(x), 0) → true
p(0) → 0
p(s(x)) → x

The set Q consists of the following terms:

gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
p(0)
p(s(x0))

We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule COND3(false, 0, x0) → COND1(gr(x0, 0), 0, p(x0)) at position [0] we obtained the following new rules:

COND3(false, 0, s(x0)) → COND1(true, 0, p(s(x0)))
COND3(false, 0, 0) → COND1(false, 0, p(0))



↳ QTRS
  ↳ AAECC Innermost
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Narrowing
                              ↳ QDP
                                ↳ DependencyGraphProof
                                  ↳ QDP
                                    ↳ Narrowing
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Narrowing
                                              ↳ QDP
                                                ↳ DependencyGraphProof
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Narrowing
                                                              ↳ QDP
                                                                ↳ DependencyGraphProof
                                                                  ↳ AND
                                                                    ↳ QDP
                                                                      ↳ UsableRulesProof
                                                                        ↳ QDP
                                                                          ↳ QReductionProof
                                                                            ↳ QDP
                                                                              ↳ Rewriting
                                                                                ↳ QDP
                                                                                  ↳ Narrowing
QDP
                                                                                      ↳ DependencyGraphProof
                                                                    ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

COND3(false, 0, s(x0)) → COND1(true, 0, p(s(x0)))
COND3(true, 0, x0) → COND1(gr(x0, 0), 0, x0)
COND3(false, 0, 0) → COND1(false, 0, p(0))
COND1(true, 0, x0) → COND2(false, 0, x0)
COND2(false, 0, s(x0)) → COND3(false, 0, s(x0))
COND2(false, 0, 0) → COND3(true, 0, 0)

The TRS R consists of the following rules:

gr(0, x) → false
gr(s(x), 0) → true
p(0) → 0
p(s(x)) → x

The set Q consists of the following terms:

gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
p(0)
p(s(x0))

We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 1 less node.

↳ QTRS
  ↳ AAECC Innermost
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Narrowing
                              ↳ QDP
                                ↳ DependencyGraphProof
                                  ↳ QDP
                                    ↳ Narrowing
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Narrowing
                                              ↳ QDP
                                                ↳ DependencyGraphProof
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Narrowing
                                                              ↳ QDP
                                                                ↳ DependencyGraphProof
                                                                  ↳ AND
                                                                    ↳ QDP
                                                                      ↳ UsableRulesProof
                                                                        ↳ QDP
                                                                          ↳ QReductionProof
                                                                            ↳ QDP
                                                                              ↳ Rewriting
                                                                                ↳ QDP
                                                                                  ↳ Narrowing
                                                                                    ↳ QDP
                                                                                      ↳ DependencyGraphProof
QDP
                                                                                          ↳ UsableRulesProof
                                                                    ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

COND3(false, 0, s(x0)) → COND1(true, 0, p(s(x0)))
COND3(true, 0, x0) → COND1(gr(x0, 0), 0, x0)
COND1(true, 0, x0) → COND2(false, 0, x0)
COND2(false, 0, s(x0)) → COND3(false, 0, s(x0))
COND2(false, 0, 0) → COND3(true, 0, 0)

The TRS R consists of the following rules:

gr(0, x) → false
gr(s(x), 0) → true
p(0) → 0
p(s(x)) → x

The set Q consists of the following terms:

gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
p(0)
p(s(x0))

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [15] we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ AAECC Innermost
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Narrowing
                              ↳ QDP
                                ↳ DependencyGraphProof
                                  ↳ QDP
                                    ↳ Narrowing
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Narrowing
                                              ↳ QDP
                                                ↳ DependencyGraphProof
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Narrowing
                                                              ↳ QDP
                                                                ↳ DependencyGraphProof
                                                                  ↳ AND
                                                                    ↳ QDP
                                                                      ↳ UsableRulesProof
                                                                        ↳ QDP
                                                                          ↳ QReductionProof
                                                                            ↳ QDP
                                                                              ↳ Rewriting
                                                                                ↳ QDP
                                                                                  ↳ Narrowing
                                                                                    ↳ QDP
                                                                                      ↳ DependencyGraphProof
                                                                                        ↳ QDP
                                                                                          ↳ UsableRulesProof
QDP
                                                                                              ↳ Rewriting
                                                                    ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

COND3(false, 0, s(x0)) → COND1(true, 0, p(s(x0)))
COND3(true, 0, x0) → COND1(gr(x0, 0), 0, x0)
COND1(true, 0, x0) → COND2(false, 0, x0)
COND2(false, 0, s(x0)) → COND3(false, 0, s(x0))
COND2(false, 0, 0) → COND3(true, 0, 0)

The TRS R consists of the following rules:

gr(0, x) → false
gr(s(x), 0) → true
p(s(x)) → x

The set Q consists of the following terms:

gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
p(0)
p(s(x0))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [15] the rule COND3(false, 0, s(x0)) → COND1(true, 0, p(s(x0))) at position [2] we obtained the following new rules:

COND3(false, 0, s(x0)) → COND1(true, 0, x0)



↳ QTRS
  ↳ AAECC Innermost
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Narrowing
                              ↳ QDP
                                ↳ DependencyGraphProof
                                  ↳ QDP
                                    ↳ Narrowing
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Narrowing
                                              ↳ QDP
                                                ↳ DependencyGraphProof
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Narrowing
                                                              ↳ QDP
                                                                ↳ DependencyGraphProof
                                                                  ↳ AND
                                                                    ↳ QDP
                                                                      ↳ UsableRulesProof
                                                                        ↳ QDP
                                                                          ↳ QReductionProof
                                                                            ↳ QDP
                                                                              ↳ Rewriting
                                                                                ↳ QDP
                                                                                  ↳ Narrowing
                                                                                    ↳ QDP
                                                                                      ↳ DependencyGraphProof
                                                                                        ↳ QDP
                                                                                          ↳ UsableRulesProof
                                                                                            ↳ QDP
                                                                                              ↳ Rewriting
QDP
                                                                                                  ↳ UsableRulesProof
                                                                    ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

COND3(true, 0, x0) → COND1(gr(x0, 0), 0, x0)
COND1(true, 0, x0) → COND2(false, 0, x0)
COND2(false, 0, s(x0)) → COND3(false, 0, s(x0))
COND3(false, 0, s(x0)) → COND1(true, 0, x0)
COND2(false, 0, 0) → COND3(true, 0, 0)

The TRS R consists of the following rules:

gr(0, x) → false
gr(s(x), 0) → true
p(s(x)) → x

The set Q consists of the following terms:

gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
p(0)
p(s(x0))

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [15] we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ AAECC Innermost
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Narrowing
                              ↳ QDP
                                ↳ DependencyGraphProof
                                  ↳ QDP
                                    ↳ Narrowing
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Narrowing
                                              ↳ QDP
                                                ↳ DependencyGraphProof
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Narrowing
                                                              ↳ QDP
                                                                ↳ DependencyGraphProof
                                                                  ↳ AND
                                                                    ↳ QDP
                                                                      ↳ UsableRulesProof
                                                                        ↳ QDP
                                                                          ↳ QReductionProof
                                                                            ↳ QDP
                                                                              ↳ Rewriting
                                                                                ↳ QDP
                                                                                  ↳ Narrowing
                                                                                    ↳ QDP
                                                                                      ↳ DependencyGraphProof
                                                                                        ↳ QDP
                                                                                          ↳ UsableRulesProof
                                                                                            ↳ QDP
                                                                                              ↳ Rewriting
                                                                                                ↳ QDP
                                                                                                  ↳ UsableRulesProof
QDP
                                                                                                      ↳ QReductionProof
                                                                    ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

COND3(true, 0, x0) → COND1(gr(x0, 0), 0, x0)
COND1(true, 0, x0) → COND2(false, 0, x0)
COND2(false, 0, s(x0)) → COND3(false, 0, s(x0))
COND3(false, 0, s(x0)) → COND1(true, 0, x0)
COND2(false, 0, 0) → COND3(true, 0, 0)

The TRS R consists of the following rules:

gr(0, x) → false
gr(s(x), 0) → true

The set Q consists of the following terms:

gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
p(0)
p(s(x0))

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.

p(0)
p(s(x0))



↳ QTRS
  ↳ AAECC Innermost
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Narrowing
                              ↳ QDP
                                ↳ DependencyGraphProof
                                  ↳ QDP
                                    ↳ Narrowing
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Narrowing
                                              ↳ QDP
                                                ↳ DependencyGraphProof
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Narrowing
                                                              ↳ QDP
                                                                ↳ DependencyGraphProof
                                                                  ↳ AND
                                                                    ↳ QDP
                                                                      ↳ UsableRulesProof
                                                                        ↳ QDP
                                                                          ↳ QReductionProof
                                                                            ↳ QDP
                                                                              ↳ Rewriting
                                                                                ↳ QDP
                                                                                  ↳ Narrowing
                                                                                    ↳ QDP
                                                                                      ↳ DependencyGraphProof
                                                                                        ↳ QDP
                                                                                          ↳ UsableRulesProof
                                                                                            ↳ QDP
                                                                                              ↳ Rewriting
                                                                                                ↳ QDP
                                                                                                  ↳ UsableRulesProof
                                                                                                    ↳ QDP
                                                                                                      ↳ QReductionProof
QDP
                                                                                                          ↳ Narrowing
                                                                    ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

COND3(true, 0, x0) → COND1(gr(x0, 0), 0, x0)
COND1(true, 0, x0) → COND2(false, 0, x0)
COND2(false, 0, s(x0)) → COND3(false, 0, s(x0))
COND2(false, 0, 0) → COND3(true, 0, 0)
COND3(false, 0, s(x0)) → COND1(true, 0, x0)

The TRS R consists of the following rules:

gr(0, x) → false
gr(s(x), 0) → true

The set Q consists of the following terms:

gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule COND3(true, 0, x0) → COND1(gr(x0, 0), 0, x0) at position [0] we obtained the following new rules:

COND3(true, 0, s(x0)) → COND1(true, 0, s(x0))
COND3(true, 0, 0) → COND1(false, 0, 0)



↳ QTRS
  ↳ AAECC Innermost
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Narrowing
                              ↳ QDP
                                ↳ DependencyGraphProof
                                  ↳ QDP
                                    ↳ Narrowing
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Narrowing
                                              ↳ QDP
                                                ↳ DependencyGraphProof
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Narrowing
                                                              ↳ QDP
                                                                ↳ DependencyGraphProof
                                                                  ↳ AND
                                                                    ↳ QDP
                                                                      ↳ UsableRulesProof
                                                                        ↳ QDP
                                                                          ↳ QReductionProof
                                                                            ↳ QDP
                                                                              ↳ Rewriting
                                                                                ↳ QDP
                                                                                  ↳ Narrowing
                                                                                    ↳ QDP
                                                                                      ↳ DependencyGraphProof
                                                                                        ↳ QDP
                                                                                          ↳ UsableRulesProof
                                                                                            ↳ QDP
                                                                                              ↳ Rewriting
                                                                                                ↳ QDP
                                                                                                  ↳ UsableRulesProof
                                                                                                    ↳ QDP
                                                                                                      ↳ QReductionProof
                                                                                                        ↳ QDP
                                                                                                          ↳ Narrowing
QDP
                                                                                                              ↳ DependencyGraphProof
                                                                    ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

COND3(true, 0, s(x0)) → COND1(true, 0, s(x0))
COND3(true, 0, 0) → COND1(false, 0, 0)
COND1(true, 0, x0) → COND2(false, 0, x0)
COND2(false, 0, s(x0)) → COND3(false, 0, s(x0))
COND3(false, 0, s(x0)) → COND1(true, 0, x0)
COND2(false, 0, 0) → COND3(true, 0, 0)

The TRS R consists of the following rules:

gr(0, x) → false
gr(s(x), 0) → true

The set Q consists of the following terms:

gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 3 less nodes.

↳ QTRS
  ↳ AAECC Innermost
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Narrowing
                              ↳ QDP
                                ↳ DependencyGraphProof
                                  ↳ QDP
                                    ↳ Narrowing
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Narrowing
                                              ↳ QDP
                                                ↳ DependencyGraphProof
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Narrowing
                                                              ↳ QDP
                                                                ↳ DependencyGraphProof
                                                                  ↳ AND
                                                                    ↳ QDP
                                                                      ↳ UsableRulesProof
                                                                        ↳ QDP
                                                                          ↳ QReductionProof
                                                                            ↳ QDP
                                                                              ↳ Rewriting
                                                                                ↳ QDP
                                                                                  ↳ Narrowing
                                                                                    ↳ QDP
                                                                                      ↳ DependencyGraphProof
                                                                                        ↳ QDP
                                                                                          ↳ UsableRulesProof
                                                                                            ↳ QDP
                                                                                              ↳ Rewriting
                                                                                                ↳ QDP
                                                                                                  ↳ UsableRulesProof
                                                                                                    ↳ QDP
                                                                                                      ↳ QReductionProof
                                                                                                        ↳ QDP
                                                                                                          ↳ Narrowing
                                                                                                            ↳ QDP
                                                                                                              ↳ DependencyGraphProof
QDP
                                                                                                                  ↳ UsableRulesProof
                                                                    ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

COND1(true, 0, x0) → COND2(false, 0, x0)
COND2(false, 0, s(x0)) → COND3(false, 0, s(x0))
COND3(false, 0, s(x0)) → COND1(true, 0, x0)

The TRS R consists of the following rules:

gr(0, x) → false
gr(s(x), 0) → true

The set Q consists of the following terms:

gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [15] we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ AAECC Innermost
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Narrowing
                              ↳ QDP
                                ↳ DependencyGraphProof
                                  ↳ QDP
                                    ↳ Narrowing
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Narrowing
                                              ↳ QDP
                                                ↳ DependencyGraphProof
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Narrowing
                                                              ↳ QDP
                                                                ↳ DependencyGraphProof
                                                                  ↳ AND
                                                                    ↳ QDP
                                                                      ↳ UsableRulesProof
                                                                        ↳ QDP
                                                                          ↳ QReductionProof
                                                                            ↳ QDP
                                                                              ↳ Rewriting
                                                                                ↳ QDP
                                                                                  ↳ Narrowing
                                                                                    ↳ QDP
                                                                                      ↳ DependencyGraphProof
                                                                                        ↳ QDP
                                                                                          ↳ UsableRulesProof
                                                                                            ↳ QDP
                                                                                              ↳ Rewriting
                                                                                                ↳ QDP
                                                                                                  ↳ UsableRulesProof
                                                                                                    ↳ QDP
                                                                                                      ↳ QReductionProof
                                                                                                        ↳ QDP
                                                                                                          ↳ Narrowing
                                                                                                            ↳ QDP
                                                                                                              ↳ DependencyGraphProof
                                                                                                                ↳ QDP
                                                                                                                  ↳ UsableRulesProof
QDP
                                                                                                                      ↳ QReductionProof
                                                                    ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

COND1(true, 0, x0) → COND2(false, 0, x0)
COND2(false, 0, s(x0)) → COND3(false, 0, s(x0))
COND3(false, 0, s(x0)) → COND1(true, 0, x0)

R is empty.
The set Q consists of the following terms:

gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.

gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))



↳ QTRS
  ↳ AAECC Innermost
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Narrowing
                              ↳ QDP
                                ↳ DependencyGraphProof
                                  ↳ QDP
                                    ↳ Narrowing
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Narrowing
                                              ↳ QDP
                                                ↳ DependencyGraphProof
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Narrowing
                                                              ↳ QDP
                                                                ↳ DependencyGraphProof
                                                                  ↳ AND
                                                                    ↳ QDP
                                                                      ↳ UsableRulesProof
                                                                        ↳ QDP
                                                                          ↳ QReductionProof
                                                                            ↳ QDP
                                                                              ↳ Rewriting
                                                                                ↳ QDP
                                                                                  ↳ Narrowing
                                                                                    ↳ QDP
                                                                                      ↳ DependencyGraphProof
                                                                                        ↳ QDP
                                                                                          ↳ UsableRulesProof
                                                                                            ↳ QDP
                                                                                              ↳ Rewriting
                                                                                                ↳ QDP
                                                                                                  ↳ UsableRulesProof
                                                                                                    ↳ QDP
                                                                                                      ↳ QReductionProof
                                                                                                        ↳ QDP
                                                                                                          ↳ Narrowing
                                                                                                            ↳ QDP
                                                                                                              ↳ DependencyGraphProof
                                                                                                                ↳ QDP
                                                                                                                  ↳ UsableRulesProof
                                                                                                                    ↳ QDP
                                                                                                                      ↳ QReductionProof
QDP
                                                                                                                          ↳ ForwardInstantiation
                                                                    ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

COND1(true, 0, x0) → COND2(false, 0, x0)
COND2(false, 0, s(x0)) → COND3(false, 0, s(x0))
COND3(false, 0, s(x0)) → COND1(true, 0, x0)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By forward instantiating [14] the rule COND1(true, 0, x0) → COND2(false, 0, x0) we obtained the following new rules:

COND1(true, 0, s(y_0)) → COND2(false, 0, s(y_0))



↳ QTRS
  ↳ AAECC Innermost
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Narrowing
                              ↳ QDP
                                ↳ DependencyGraphProof
                                  ↳ QDP
                                    ↳ Narrowing
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Narrowing
                                              ↳ QDP
                                                ↳ DependencyGraphProof
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Narrowing
                                                              ↳ QDP
                                                                ↳ DependencyGraphProof
                                                                  ↳ AND
                                                                    ↳ QDP
                                                                      ↳ UsableRulesProof
                                                                        ↳ QDP
                                                                          ↳ QReductionProof
                                                                            ↳ QDP
                                                                              ↳ Rewriting
                                                                                ↳ QDP
                                                                                  ↳ Narrowing
                                                                                    ↳ QDP
                                                                                      ↳ DependencyGraphProof
                                                                                        ↳ QDP
                                                                                          ↳ UsableRulesProof
                                                                                            ↳ QDP
                                                                                              ↳ Rewriting
                                                                                                ↳ QDP
                                                                                                  ↳ UsableRulesProof
                                                                                                    ↳ QDP
                                                                                                      ↳ QReductionProof
                                                                                                        ↳ QDP
                                                                                                          ↳ Narrowing
                                                                                                            ↳ QDP
                                                                                                              ↳ DependencyGraphProof
                                                                                                                ↳ QDP
                                                                                                                  ↳ UsableRulesProof
                                                                                                                    ↳ QDP
                                                                                                                      ↳ QReductionProof
                                                                                                                        ↳ QDP
                                                                                                                          ↳ ForwardInstantiation
QDP
                                                                                                                              ↳ ForwardInstantiation
                                                                    ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

COND1(true, 0, s(y_0)) → COND2(false, 0, s(y_0))
COND2(false, 0, s(x0)) → COND3(false, 0, s(x0))
COND3(false, 0, s(x0)) → COND1(true, 0, x0)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By forward instantiating [14] the rule COND3(false, 0, s(x0)) → COND1(true, 0, x0) we obtained the following new rules:

COND3(false, 0, s(s(y_0))) → COND1(true, 0, s(y_0))



↳ QTRS
  ↳ AAECC Innermost
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Narrowing
                              ↳ QDP
                                ↳ DependencyGraphProof
                                  ↳ QDP
                                    ↳ Narrowing
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Narrowing
                                              ↳ QDP
                                                ↳ DependencyGraphProof
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Narrowing
                                                              ↳ QDP
                                                                ↳ DependencyGraphProof
                                                                  ↳ AND
                                                                    ↳ QDP
                                                                      ↳ UsableRulesProof
                                                                        ↳ QDP
                                                                          ↳ QReductionProof
                                                                            ↳ QDP
                                                                              ↳ Rewriting
                                                                                ↳ QDP
                                                                                  ↳ Narrowing
                                                                                    ↳ QDP
                                                                                      ↳ DependencyGraphProof
                                                                                        ↳ QDP
                                                                                          ↳ UsableRulesProof
                                                                                            ↳ QDP
                                                                                              ↳ Rewriting
                                                                                                ↳ QDP
                                                                                                  ↳ UsableRulesProof
                                                                                                    ↳ QDP
                                                                                                      ↳ QReductionProof
                                                                                                        ↳ QDP
                                                                                                          ↳ Narrowing
                                                                                                            ↳ QDP
                                                                                                              ↳ DependencyGraphProof
                                                                                                                ↳ QDP
                                                                                                                  ↳ UsableRulesProof
                                                                                                                    ↳ QDP
                                                                                                                      ↳ QReductionProof
                                                                                                                        ↳ QDP
                                                                                                                          ↳ ForwardInstantiation
                                                                                                                            ↳ QDP
                                                                                                                              ↳ ForwardInstantiation
QDP
                                                                                                                                  ↳ ForwardInstantiation
                                                                    ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

COND1(true, 0, s(y_0)) → COND2(false, 0, s(y_0))
COND3(false, 0, s(s(y_0))) → COND1(true, 0, s(y_0))
COND2(false, 0, s(x0)) → COND3(false, 0, s(x0))

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By forward instantiating [14] the rule COND2(false, 0, s(x0)) → COND3(false, 0, s(x0)) we obtained the following new rules:

COND2(false, 0, s(s(y_0))) → COND3(false, 0, s(s(y_0)))



↳ QTRS
  ↳ AAECC Innermost
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Narrowing
                              ↳ QDP
                                ↳ DependencyGraphProof
                                  ↳ QDP
                                    ↳ Narrowing
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Narrowing
                                              ↳ QDP
                                                ↳ DependencyGraphProof
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Narrowing
                                                              ↳ QDP
                                                                ↳ DependencyGraphProof
                                                                  ↳ AND
                                                                    ↳ QDP
                                                                      ↳ UsableRulesProof
                                                                        ↳ QDP
                                                                          ↳ QReductionProof
                                                                            ↳ QDP
                                                                              ↳ Rewriting
                                                                                ↳ QDP
                                                                                  ↳ Narrowing
                                                                                    ↳ QDP
                                                                                      ↳ DependencyGraphProof
                                                                                        ↳ QDP
                                                                                          ↳ UsableRulesProof
                                                                                            ↳ QDP
                                                                                              ↳ Rewriting
                                                                                                ↳ QDP
                                                                                                  ↳ UsableRulesProof
                                                                                                    ↳ QDP
                                                                                                      ↳ QReductionProof
                                                                                                        ↳ QDP
                                                                                                          ↳ Narrowing
                                                                                                            ↳ QDP
                                                                                                              ↳ DependencyGraphProof
                                                                                                                ↳ QDP
                                                                                                                  ↳ UsableRulesProof
                                                                                                                    ↳ QDP
                                                                                                                      ↳ QReductionProof
                                                                                                                        ↳ QDP
                                                                                                                          ↳ ForwardInstantiation
                                                                                                                            ↳ QDP
                                                                                                                              ↳ ForwardInstantiation
                                                                                                                                ↳ QDP
                                                                                                                                  ↳ ForwardInstantiation
QDP
                                                                                                                                      ↳ QDPSizeChangeProof
                                                                    ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

COND1(true, 0, s(y_0)) → COND2(false, 0, s(y_0))
COND2(false, 0, s(s(y_0))) → COND3(false, 0, s(s(y_0)))
COND3(false, 0, s(s(y_0))) → COND1(true, 0, s(y_0))

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ QTRS
  ↳ AAECC Innermost
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Narrowing
                              ↳ QDP
                                ↳ DependencyGraphProof
                                  ↳ QDP
                                    ↳ Narrowing
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Narrowing
                                              ↳ QDP
                                                ↳ DependencyGraphProof
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Narrowing
                                                              ↳ QDP
                                                                ↳ DependencyGraphProof
                                                                  ↳ AND
                                                                    ↳ QDP
QDP
                                                                      ↳ Rewriting

Q DP problem:
The TRS P consists of the following rules:

COND3(false, s(x0), x1) → COND1(true, s(x0), p(x1))
COND2(false, s(x0), s(x1)) → COND3(eq(x0, x1), s(x0), s(x1))
COND1(true, s(x0), s(x1)) → COND2(gr(x0, x1), s(x0), s(x1))
COND2(true, s(x0), x1) → COND1(true, x0, x1)
COND1(true, s(x0), 0) → COND2(true, s(x0), 0)
COND3(true, s(x0), x1) → COND1(gr(s(add(x0, x1)), 0), p(s(x0)), x1)

The TRS R consists of the following rules:

add(0, x) → x
add(s(x), y) → s(add(x, y))
gr(0, x) → false
gr(s(x), 0) → true
p(0) → 0
p(s(x)) → x
gr(s(x), s(y)) → gr(x, y)
eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)

The set Q consists of the following terms:

gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
add(0, x0)
add(s(x0), x1)
eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
p(0)
p(s(x0))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [15] the rule COND3(true, s(x0), x1) → COND1(gr(s(add(x0, x1)), 0), p(s(x0)), x1) at position [0] we obtained the following new rules:

COND3(true, s(x0), x1) → COND1(true, p(s(x0)), x1)



↳ QTRS
  ↳ AAECC Innermost
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Narrowing
                              ↳ QDP
                                ↳ DependencyGraphProof
                                  ↳ QDP
                                    ↳ Narrowing
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Narrowing
                                              ↳ QDP
                                                ↳ DependencyGraphProof
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Narrowing
                                                              ↳ QDP
                                                                ↳ DependencyGraphProof
                                                                  ↳ AND
                                                                    ↳ QDP
                                                                    ↳ QDP
                                                                      ↳ Rewriting
QDP
                                                                          ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

COND2(false, s(x0), s(x1)) → COND3(eq(x0, x1), s(x0), s(x1))
COND3(false, s(x0), x1) → COND1(true, s(x0), p(x1))
COND1(true, s(x0), s(x1)) → COND2(gr(x0, x1), s(x0), s(x1))
COND3(true, s(x0), x1) → COND1(true, p(s(x0)), x1)
COND2(true, s(x0), x1) → COND1(true, x0, x1)
COND1(true, s(x0), 0) → COND2(true, s(x0), 0)

The TRS R consists of the following rules:

add(0, x) → x
add(s(x), y) → s(add(x, y))
gr(0, x) → false
gr(s(x), 0) → true
p(0) → 0
p(s(x)) → x
gr(s(x), s(y)) → gr(x, y)
eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)

The set Q consists of the following terms:

gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
add(0, x0)
add(s(x0), x1)
eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
p(0)
p(s(x0))

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [15] we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ AAECC Innermost
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Narrowing
                              ↳ QDP
                                ↳ DependencyGraphProof
                                  ↳ QDP
                                    ↳ Narrowing
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Narrowing
                                              ↳ QDP
                                                ↳ DependencyGraphProof
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Narrowing
                                                              ↳ QDP
                                                                ↳ DependencyGraphProof
                                                                  ↳ AND
                                                                    ↳ QDP
                                                                    ↳ QDP
                                                                      ↳ Rewriting
                                                                        ↳ QDP
                                                                          ↳ UsableRulesProof
QDP
                                                                              ↳ QReductionProof

Q DP problem:
The TRS P consists of the following rules:

COND3(false, s(x0), x1) → COND1(true, s(x0), p(x1))
COND2(false, s(x0), s(x1)) → COND3(eq(x0, x1), s(x0), s(x1))
COND1(true, s(x0), s(x1)) → COND2(gr(x0, x1), s(x0), s(x1))
COND3(true, s(x0), x1) → COND1(true, p(s(x0)), x1)
COND2(true, s(x0), x1) → COND1(true, x0, x1)
COND1(true, s(x0), 0) → COND2(true, s(x0), 0)

The TRS R consists of the following rules:

gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
p(0) → 0
p(s(x)) → x
eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)

The set Q consists of the following terms:

gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
add(0, x0)
add(s(x0), x1)
eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
p(0)
p(s(x0))

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.

add(0, x0)
add(s(x0), x1)



↳ QTRS
  ↳ AAECC Innermost
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Narrowing
                              ↳ QDP
                                ↳ DependencyGraphProof
                                  ↳ QDP
                                    ↳ Narrowing
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Narrowing
                                              ↳ QDP
                                                ↳ DependencyGraphProof
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Narrowing
                                                              ↳ QDP
                                                                ↳ DependencyGraphProof
                                                                  ↳ AND
                                                                    ↳ QDP
                                                                    ↳ QDP
                                                                      ↳ Rewriting
                                                                        ↳ QDP
                                                                          ↳ UsableRulesProof
                                                                            ↳ QDP
                                                                              ↳ QReductionProof
QDP
                                                                                  ↳ Rewriting

Q DP problem:
The TRS P consists of the following rules:

COND2(false, s(x0), s(x1)) → COND3(eq(x0, x1), s(x0), s(x1))
COND3(false, s(x0), x1) → COND1(true, s(x0), p(x1))
COND1(true, s(x0), s(x1)) → COND2(gr(x0, x1), s(x0), s(x1))
COND3(true, s(x0), x1) → COND1(true, p(s(x0)), x1)
COND2(true, s(x0), x1) → COND1(true, x0, x1)
COND1(true, s(x0), 0) → COND2(true, s(x0), 0)

The TRS R consists of the following rules:

gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
p(0) → 0
p(s(x)) → x
eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)

The set Q consists of the following terms:

gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
p(0)
p(s(x0))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [15] the rule COND3(true, s(x0), x1) → COND1(true, p(s(x0)), x1) at position [1] we obtained the following new rules:

COND3(true, s(x0), x1) → COND1(true, x0, x1)



↳ QTRS
  ↳ AAECC Innermost
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Narrowing
                              ↳ QDP
                                ↳ DependencyGraphProof
                                  ↳ QDP
                                    ↳ Narrowing
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Narrowing
                                              ↳ QDP
                                                ↳ DependencyGraphProof
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Narrowing
                                                              ↳ QDP
                                                                ↳ DependencyGraphProof
                                                                  ↳ AND
                                                                    ↳ QDP
                                                                    ↳ QDP
                                                                      ↳ Rewriting
                                                                        ↳ QDP
                                                                          ↳ UsableRulesProof
                                                                            ↳ QDP
                                                                              ↳ QReductionProof
                                                                                ↳ QDP
                                                                                  ↳ Rewriting
QDP
                                                                                      ↳ Narrowing

Q DP problem:
The TRS P consists of the following rules:

COND3(false, s(x0), x1) → COND1(true, s(x0), p(x1))
COND2(false, s(x0), s(x1)) → COND3(eq(x0, x1), s(x0), s(x1))
COND3(true, s(x0), x1) → COND1(true, x0, x1)
COND1(true, s(x0), s(x1)) → COND2(gr(x0, x1), s(x0), s(x1))
COND2(true, s(x0), x1) → COND1(true, x0, x1)
COND1(true, s(x0), 0) → COND2(true, s(x0), 0)

The TRS R consists of the following rules:

gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
p(0) → 0
p(s(x)) → x
eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)

The set Q consists of the following terms:

gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
p(0)
p(s(x0))

We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule COND3(false, s(x0), x1) → COND1(true, s(x0), p(x1)) at position [2] we obtained the following new rules:

COND3(false, s(y0), s(x0)) → COND1(true, s(y0), x0)
COND3(false, s(y0), 0) → COND1(true, s(y0), 0)



↳ QTRS
  ↳ AAECC Innermost
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Narrowing
                              ↳ QDP
                                ↳ DependencyGraphProof
                                  ↳ QDP
                                    ↳ Narrowing
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Narrowing
                                              ↳ QDP
                                                ↳ DependencyGraphProof
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Narrowing
                                                              ↳ QDP
                                                                ↳ DependencyGraphProof
                                                                  ↳ AND
                                                                    ↳ QDP
                                                                    ↳ QDP
                                                                      ↳ Rewriting
                                                                        ↳ QDP
                                                                          ↳ UsableRulesProof
                                                                            ↳ QDP
                                                                              ↳ QReductionProof
                                                                                ↳ QDP
                                                                                  ↳ Rewriting
                                                                                    ↳ QDP
                                                                                      ↳ Narrowing
QDP
                                                                                          ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

COND2(false, s(x0), s(x1)) → COND3(eq(x0, x1), s(x0), s(x1))
COND3(false, s(y0), s(x0)) → COND1(true, s(y0), x0)
COND1(true, s(x0), s(x1)) → COND2(gr(x0, x1), s(x0), s(x1))
COND3(true, s(x0), x1) → COND1(true, x0, x1)
COND3(false, s(y0), 0) → COND1(true, s(y0), 0)
COND2(true, s(x0), x1) → COND1(true, x0, x1)
COND1(true, s(x0), 0) → COND2(true, s(x0), 0)

The TRS R consists of the following rules:

gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
p(0) → 0
p(s(x)) → x
eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)

The set Q consists of the following terms:

gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
p(0)
p(s(x0))

We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 1 less node.

↳ QTRS
  ↳ AAECC Innermost
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Narrowing
                              ↳ QDP
                                ↳ DependencyGraphProof
                                  ↳ QDP
                                    ↳ Narrowing
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Narrowing
                                              ↳ QDP
                                                ↳ DependencyGraphProof
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Narrowing
                                                              ↳ QDP
                                                                ↳ DependencyGraphProof
                                                                  ↳ AND
                                                                    ↳ QDP
                                                                    ↳ QDP
                                                                      ↳ Rewriting
                                                                        ↳ QDP
                                                                          ↳ UsableRulesProof
                                                                            ↳ QDP
                                                                              ↳ QReductionProof
                                                                                ↳ QDP
                                                                                  ↳ Rewriting
                                                                                    ↳ QDP
                                                                                      ↳ Narrowing
                                                                                        ↳ QDP
                                                                                          ↳ DependencyGraphProof
QDP
                                                                                              ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

COND2(false, s(x0), s(x1)) → COND3(eq(x0, x1), s(x0), s(x1))
COND3(false, s(y0), s(x0)) → COND1(true, s(y0), x0)
COND1(true, s(x0), s(x1)) → COND2(gr(x0, x1), s(x0), s(x1))
COND3(true, s(x0), x1) → COND1(true, x0, x1)
COND2(true, s(x0), x1) → COND1(true, x0, x1)
COND1(true, s(x0), 0) → COND2(true, s(x0), 0)

The TRS R consists of the following rules:

gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
p(0) → 0
p(s(x)) → x
eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)

The set Q consists of the following terms:

gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
p(0)
p(s(x0))

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [15] we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ AAECC Innermost
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Narrowing
                              ↳ QDP
                                ↳ DependencyGraphProof
                                  ↳ QDP
                                    ↳ Narrowing
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Narrowing
                                              ↳ QDP
                                                ↳ DependencyGraphProof
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Narrowing
                                                              ↳ QDP
                                                                ↳ DependencyGraphProof
                                                                  ↳ AND
                                                                    ↳ QDP
                                                                    ↳ QDP
                                                                      ↳ Rewriting
                                                                        ↳ QDP
                                                                          ↳ UsableRulesProof
                                                                            ↳ QDP
                                                                              ↳ QReductionProof
                                                                                ↳ QDP
                                                                                  ↳ Rewriting
                                                                                    ↳ QDP
                                                                                      ↳ Narrowing
                                                                                        ↳ QDP
                                                                                          ↳ DependencyGraphProof
                                                                                            ↳ QDP
                                                                                              ↳ UsableRulesProof
QDP
                                                                                                  ↳ QReductionProof

Q DP problem:
The TRS P consists of the following rules:

COND2(false, s(x0), s(x1)) → COND3(eq(x0, x1), s(x0), s(x1))
COND3(false, s(y0), s(x0)) → COND1(true, s(y0), x0)
COND1(true, s(x0), s(x1)) → COND2(gr(x0, x1), s(x0), s(x1))
COND3(true, s(x0), x1) → COND1(true, x0, x1)
COND2(true, s(x0), x1) → COND1(true, x0, x1)
COND1(true, s(x0), 0) → COND2(true, s(x0), 0)

The TRS R consists of the following rules:

eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)

The set Q consists of the following terms:

gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
p(0)
p(s(x0))

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.

p(0)
p(s(x0))



↳ QTRS
  ↳ AAECC Innermost
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Narrowing
                              ↳ QDP
                                ↳ DependencyGraphProof
                                  ↳ QDP
                                    ↳ Narrowing
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Narrowing
                                              ↳ QDP
                                                ↳ DependencyGraphProof
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Narrowing
                                                              ↳ QDP
                                                                ↳ DependencyGraphProof
                                                                  ↳ AND
                                                                    ↳ QDP
                                                                    ↳ QDP
                                                                      ↳ Rewriting
                                                                        ↳ QDP
                                                                          ↳ UsableRulesProof
                                                                            ↳ QDP
                                                                              ↳ QReductionProof
                                                                                ↳ QDP
                                                                                  ↳ Rewriting
                                                                                    ↳ QDP
                                                                                      ↳ Narrowing
                                                                                        ↳ QDP
                                                                                          ↳ DependencyGraphProof
                                                                                            ↳ QDP
                                                                                              ↳ UsableRulesProof
                                                                                                ↳ QDP
                                                                                                  ↳ QReductionProof
QDP
                                                                                                      ↳ Instantiation

Q DP problem:
The TRS P consists of the following rules:

COND2(false, s(x0), s(x1)) → COND3(eq(x0, x1), s(x0), s(x1))
COND3(false, s(y0), s(x0)) → COND1(true, s(y0), x0)
COND3(true, s(x0), x1) → COND1(true, x0, x1)
COND1(true, s(x0), s(x1)) → COND2(gr(x0, x1), s(x0), s(x1))
COND2(true, s(x0), x1) → COND1(true, x0, x1)
COND1(true, s(x0), 0) → COND2(true, s(x0), 0)

The TRS R consists of the following rules:

eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)

The set Q consists of the following terms:

gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
By instantiating [15] the rule COND3(true, s(x0), x1) → COND1(true, x0, x1) we obtained the following new rules:

COND3(true, s(z0), s(z1)) → COND1(true, z0, s(z1))



↳ QTRS
  ↳ AAECC Innermost
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Narrowing
                              ↳ QDP
                                ↳ DependencyGraphProof
                                  ↳ QDP
                                    ↳ Narrowing
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Narrowing
                                              ↳ QDP
                                                ↳ DependencyGraphProof
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Narrowing
                                                              ↳ QDP
                                                                ↳ DependencyGraphProof
                                                                  ↳ AND
                                                                    ↳ QDP
                                                                    ↳ QDP
                                                                      ↳ Rewriting
                                                                        ↳ QDP
                                                                          ↳ UsableRulesProof
                                                                            ↳ QDP
                                                                              ↳ QReductionProof
                                                                                ↳ QDP
                                                                                  ↳ Rewriting
                                                                                    ↳ QDP
                                                                                      ↳ Narrowing
                                                                                        ↳ QDP
                                                                                          ↳ DependencyGraphProof
                                                                                            ↳ QDP
                                                                                              ↳ UsableRulesProof
                                                                                                ↳ QDP
                                                                                                  ↳ QReductionProof
                                                                                                    ↳ QDP
                                                                                                      ↳ Instantiation
QDP
                                                                                                          ↳ Instantiation

Q DP problem:
The TRS P consists of the following rules:

COND2(false, s(x0), s(x1)) → COND3(eq(x0, x1), s(x0), s(x1))
COND3(false, s(y0), s(x0)) → COND1(true, s(y0), x0)
COND1(true, s(x0), s(x1)) → COND2(gr(x0, x1), s(x0), s(x1))
COND3(true, s(z0), s(z1)) → COND1(true, z0, s(z1))
COND2(true, s(x0), x1) → COND1(true, x0, x1)
COND1(true, s(x0), 0) → COND2(true, s(x0), 0)

The TRS R consists of the following rules:

eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)

The set Q consists of the following terms:

gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
By instantiating [15] the rule COND2(true, s(x0), x1) → COND1(true, x0, x1) we obtained the following new rules:

COND2(true, s(z0), s(z1)) → COND1(true, z0, s(z1))
COND2(true, s(z0), 0) → COND1(true, z0, 0)



↳ QTRS
  ↳ AAECC Innermost
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Narrowing
                              ↳ QDP
                                ↳ DependencyGraphProof
                                  ↳ QDP
                                    ↳ Narrowing
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Narrowing
                                              ↳ QDP
                                                ↳ DependencyGraphProof
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Narrowing
                                                              ↳ QDP
                                                                ↳ DependencyGraphProof
                                                                  ↳ AND
                                                                    ↳ QDP
                                                                    ↳ QDP
                                                                      ↳ Rewriting
                                                                        ↳ QDP
                                                                          ↳ UsableRulesProof
                                                                            ↳ QDP
                                                                              ↳ QReductionProof
                                                                                ↳ QDP
                                                                                  ↳ Rewriting
                                                                                    ↳ QDP
                                                                                      ↳ Narrowing
                                                                                        ↳ QDP
                                                                                          ↳ DependencyGraphProof
                                                                                            ↳ QDP
                                                                                              ↳ UsableRulesProof
                                                                                                ↳ QDP
                                                                                                  ↳ QReductionProof
                                                                                                    ↳ QDP
                                                                                                      ↳ Instantiation
                                                                                                        ↳ QDP
                                                                                                          ↳ Instantiation
QDP
                                                                                                              ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

COND2(false, s(x0), s(x1)) → COND3(eq(x0, x1), s(x0), s(x1))
COND3(false, s(y0), s(x0)) → COND1(true, s(y0), x0)
COND1(true, s(x0), s(x1)) → COND2(gr(x0, x1), s(x0), s(x1))
COND2(true, s(z0), s(z1)) → COND1(true, z0, s(z1))
COND3(true, s(z0), s(z1)) → COND1(true, z0, s(z1))
COND2(true, s(z0), 0) → COND1(true, z0, 0)
COND1(true, s(x0), 0) → COND2(true, s(x0), 0)

The TRS R consists of the following rules:

eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)

The set Q consists of the following terms:

gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 2 SCCs.

↳ QTRS
  ↳ AAECC Innermost
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Narrowing
                              ↳ QDP
                                ↳ DependencyGraphProof
                                  ↳ QDP
                                    ↳ Narrowing
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Narrowing
                                              ↳ QDP
                                                ↳ DependencyGraphProof
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Narrowing
                                                              ↳ QDP
                                                                ↳ DependencyGraphProof
                                                                  ↳ AND
                                                                    ↳ QDP
                                                                    ↳ QDP
                                                                      ↳ Rewriting
                                                                        ↳ QDP
                                                                          ↳ UsableRulesProof
                                                                            ↳ QDP
                                                                              ↳ QReductionProof
                                                                                ↳ QDP
                                                                                  ↳ Rewriting
                                                                                    ↳ QDP
                                                                                      ↳ Narrowing
                                                                                        ↳ QDP
                                                                                          ↳ DependencyGraphProof
                                                                                            ↳ QDP
                                                                                              ↳ UsableRulesProof
                                                                                                ↳ QDP
                                                                                                  ↳ QReductionProof
                                                                                                    ↳ QDP
                                                                                                      ↳ Instantiation
                                                                                                        ↳ QDP
                                                                                                          ↳ Instantiation
                                                                                                            ↳ QDP
                                                                                                              ↳ DependencyGraphProof
                                                                                                                ↳ AND
QDP
                                                                                                                    ↳ UsableRulesProof
                                                                                                                  ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

COND2(true, s(z0), 0) → COND1(true, z0, 0)
COND1(true, s(x0), 0) → COND2(true, s(x0), 0)

The TRS R consists of the following rules:

eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)

The set Q consists of the following terms:

gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [15] we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ AAECC Innermost
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Narrowing
                              ↳ QDP
                                ↳ DependencyGraphProof
                                  ↳ QDP
                                    ↳ Narrowing
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Narrowing
                                              ↳ QDP
                                                ↳ DependencyGraphProof
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Narrowing
                                                              ↳ QDP
                                                                ↳ DependencyGraphProof
                                                                  ↳ AND
                                                                    ↳ QDP
                                                                    ↳ QDP
                                                                      ↳ Rewriting
                                                                        ↳ QDP
                                                                          ↳ UsableRulesProof
                                                                            ↳ QDP
                                                                              ↳ QReductionProof
                                                                                ↳ QDP
                                                                                  ↳ Rewriting
                                                                                    ↳ QDP
                                                                                      ↳ Narrowing
                                                                                        ↳ QDP
                                                                                          ↳ DependencyGraphProof
                                                                                            ↳ QDP
                                                                                              ↳ UsableRulesProof
                                                                                                ↳ QDP
                                                                                                  ↳ QReductionProof
                                                                                                    ↳ QDP
                                                                                                      ↳ Instantiation
                                                                                                        ↳ QDP
                                                                                                          ↳ Instantiation
                                                                                                            ↳ QDP
                                                                                                              ↳ DependencyGraphProof
                                                                                                                ↳ AND
                                                                                                                  ↳ QDP
                                                                                                                    ↳ UsableRulesProof
QDP
                                                                                                                        ↳ QReductionProof
                                                                                                                  ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

COND2(true, s(z0), 0) → COND1(true, z0, 0)
COND1(true, s(x0), 0) → COND2(true, s(x0), 0)

R is empty.
The set Q consists of the following terms:

gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.

gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))



↳ QTRS
  ↳ AAECC Innermost
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Narrowing
                              ↳ QDP
                                ↳ DependencyGraphProof
                                  ↳ QDP
                                    ↳ Narrowing
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Narrowing
                                              ↳ QDP
                                                ↳ DependencyGraphProof
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Narrowing
                                                              ↳ QDP
                                                                ↳ DependencyGraphProof
                                                                  ↳ AND
                                                                    ↳ QDP
                                                                    ↳ QDP
                                                                      ↳ Rewriting
                                                                        ↳ QDP
                                                                          ↳ UsableRulesProof
                                                                            ↳ QDP
                                                                              ↳ QReductionProof
                                                                                ↳ QDP
                                                                                  ↳ Rewriting
                                                                                    ↳ QDP
                                                                                      ↳ Narrowing
                                                                                        ↳ QDP
                                                                                          ↳ DependencyGraphProof
                                                                                            ↳ QDP
                                                                                              ↳ UsableRulesProof
                                                                                                ↳ QDP
                                                                                                  ↳ QReductionProof
                                                                                                    ↳ QDP
                                                                                                      ↳ Instantiation
                                                                                                        ↳ QDP
                                                                                                          ↳ Instantiation
                                                                                                            ↳ QDP
                                                                                                              ↳ DependencyGraphProof
                                                                                                                ↳ AND
                                                                                                                  ↳ QDP
                                                                                                                    ↳ UsableRulesProof
                                                                                                                      ↳ QDP
                                                                                                                        ↳ QReductionProof
QDP
                                                                                                                            ↳ ForwardInstantiation
                                                                                                                  ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

COND2(true, s(z0), 0) → COND1(true, z0, 0)
COND1(true, s(x0), 0) → COND2(true, s(x0), 0)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By forward instantiating [14] the rule COND2(true, s(z0), 0) → COND1(true, z0, 0) we obtained the following new rules:

COND2(true, s(s(y_0)), 0) → COND1(true, s(y_0), 0)



↳ QTRS
  ↳ AAECC Innermost
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Narrowing
                              ↳ QDP
                                ↳ DependencyGraphProof
                                  ↳ QDP
                                    ↳ Narrowing
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Narrowing
                                              ↳ QDP
                                                ↳ DependencyGraphProof
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Narrowing
                                                              ↳ QDP
                                                                ↳ DependencyGraphProof
                                                                  ↳ AND
                                                                    ↳ QDP
                                                                    ↳ QDP
                                                                      ↳ Rewriting
                                                                        ↳ QDP
                                                                          ↳ UsableRulesProof
                                                                            ↳ QDP
                                                                              ↳ QReductionProof
                                                                                ↳ QDP
                                                                                  ↳ Rewriting
                                                                                    ↳ QDP
                                                                                      ↳ Narrowing
                                                                                        ↳ QDP
                                                                                          ↳ DependencyGraphProof
                                                                                            ↳ QDP
                                                                                              ↳ UsableRulesProof
                                                                                                ↳ QDP
                                                                                                  ↳ QReductionProof
                                                                                                    ↳ QDP
                                                                                                      ↳ Instantiation
                                                                                                        ↳ QDP
                                                                                                          ↳ Instantiation
                                                                                                            ↳ QDP
                                                                                                              ↳ DependencyGraphProof
                                                                                                                ↳ AND
                                                                                                                  ↳ QDP
                                                                                                                    ↳ UsableRulesProof
                                                                                                                      ↳ QDP
                                                                                                                        ↳ QReductionProof
                                                                                                                          ↳ QDP
                                                                                                                            ↳ ForwardInstantiation
QDP
                                                                                                                                ↳ ForwardInstantiation
                                                                                                                  ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

COND2(true, s(s(y_0)), 0) → COND1(true, s(y_0), 0)
COND1(true, s(x0), 0) → COND2(true, s(x0), 0)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By forward instantiating [14] the rule COND1(true, s(x0), 0) → COND2(true, s(x0), 0) we obtained the following new rules:

COND1(true, s(s(y_0)), 0) → COND2(true, s(s(y_0)), 0)



↳ QTRS
  ↳ AAECC Innermost
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Narrowing
                              ↳ QDP
                                ↳ DependencyGraphProof
                                  ↳ QDP
                                    ↳ Narrowing
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Narrowing
                                              ↳ QDP
                                                ↳ DependencyGraphProof
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Narrowing
                                                              ↳ QDP
                                                                ↳ DependencyGraphProof
                                                                  ↳ AND
                                                                    ↳ QDP
                                                                    ↳ QDP
                                                                      ↳ Rewriting
                                                                        ↳ QDP
                                                                          ↳ UsableRulesProof
                                                                            ↳ QDP
                                                                              ↳ QReductionProof
                                                                                ↳ QDP
                                                                                  ↳ Rewriting
                                                                                    ↳ QDP
                                                                                      ↳ Narrowing
                                                                                        ↳ QDP
                                                                                          ↳ DependencyGraphProof
                                                                                            ↳ QDP
                                                                                              ↳ UsableRulesProof
                                                                                                ↳ QDP
                                                                                                  ↳ QReductionProof
                                                                                                    ↳ QDP
                                                                                                      ↳ Instantiation
                                                                                                        ↳ QDP
                                                                                                          ↳ Instantiation
                                                                                                            ↳ QDP
                                                                                                              ↳ DependencyGraphProof
                                                                                                                ↳ AND
                                                                                                                  ↳ QDP
                                                                                                                    ↳ UsableRulesProof
                                                                                                                      ↳ QDP
                                                                                                                        ↳ QReductionProof
                                                                                                                          ↳ QDP
                                                                                                                            ↳ ForwardInstantiation
                                                                                                                              ↳ QDP
                                                                                                                                ↳ ForwardInstantiation
QDP
                                                                                                                                    ↳ QDPSizeChangeProof
                                                                                                                  ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

COND1(true, s(s(y_0)), 0) → COND2(true, s(s(y_0)), 0)
COND2(true, s(s(y_0)), 0) → COND1(true, s(y_0), 0)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ QTRS
  ↳ AAECC Innermost
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Narrowing
                              ↳ QDP
                                ↳ DependencyGraphProof
                                  ↳ QDP
                                    ↳ Narrowing
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Narrowing
                                              ↳ QDP
                                                ↳ DependencyGraphProof
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Narrowing
                                                              ↳ QDP
                                                                ↳ DependencyGraphProof
                                                                  ↳ AND
                                                                    ↳ QDP
                                                                    ↳ QDP
                                                                      ↳ Rewriting
                                                                        ↳ QDP
                                                                          ↳ UsableRulesProof
                                                                            ↳ QDP
                                                                              ↳ QReductionProof
                                                                                ↳ QDP
                                                                                  ↳ Rewriting
                                                                                    ↳ QDP
                                                                                      ↳ Narrowing
                                                                                        ↳ QDP
                                                                                          ↳ DependencyGraphProof
                                                                                            ↳ QDP
                                                                                              ↳ UsableRulesProof
                                                                                                ↳ QDP
                                                                                                  ↳ QReductionProof
                                                                                                    ↳ QDP
                                                                                                      ↳ Instantiation
                                                                                                        ↳ QDP
                                                                                                          ↳ Instantiation
                                                                                                            ↳ QDP
                                                                                                              ↳ DependencyGraphProof
                                                                                                                ↳ AND
                                                                                                                  ↳ QDP
QDP
                                                                                                                    ↳ ForwardInstantiation

Q DP problem:
The TRS P consists of the following rules:

COND2(false, s(x0), s(x1)) → COND3(eq(x0, x1), s(x0), s(x1))
COND3(false, s(y0), s(x0)) → COND1(true, s(y0), x0)
COND1(true, s(x0), s(x1)) → COND2(gr(x0, x1), s(x0), s(x1))
COND2(true, s(z0), s(z1)) → COND1(true, z0, s(z1))
COND3(true, s(z0), s(z1)) → COND1(true, z0, s(z1))

The TRS R consists of the following rules:

eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)

The set Q consists of the following terms:

gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
By forward instantiating [14] the rule COND3(false, s(y0), s(x0)) → COND1(true, s(y0), x0) we obtained the following new rules:

COND3(false, s(x0), s(s(y_1))) → COND1(true, s(x0), s(y_1))



↳ QTRS
  ↳ AAECC Innermost
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Narrowing
                              ↳ QDP
                                ↳ DependencyGraphProof
                                  ↳ QDP
                                    ↳ Narrowing
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Narrowing
                                              ↳ QDP
                                                ↳ DependencyGraphProof
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Narrowing
                                                              ↳ QDP
                                                                ↳ DependencyGraphProof
                                                                  ↳ AND
                                                                    ↳ QDP
                                                                    ↳ QDP
                                                                      ↳ Rewriting
                                                                        ↳ QDP
                                                                          ↳ UsableRulesProof
                                                                            ↳ QDP
                                                                              ↳ QReductionProof
                                                                                ↳ QDP
                                                                                  ↳ Rewriting
                                                                                    ↳ QDP
                                                                                      ↳ Narrowing
                                                                                        ↳ QDP
                                                                                          ↳ DependencyGraphProof
                                                                                            ↳ QDP
                                                                                              ↳ UsableRulesProof
                                                                                                ↳ QDP
                                                                                                  ↳ QReductionProof
                                                                                                    ↳ QDP
                                                                                                      ↳ Instantiation
                                                                                                        ↳ QDP
                                                                                                          ↳ Instantiation
                                                                                                            ↳ QDP
                                                                                                              ↳ DependencyGraphProof
                                                                                                                ↳ AND
                                                                                                                  ↳ QDP
                                                                                                                  ↳ QDP
                                                                                                                    ↳ ForwardInstantiation
QDP
                                                                                                                        ↳ ForwardInstantiation

Q DP problem:
The TRS P consists of the following rules:

COND2(false, s(x0), s(x1)) → COND3(eq(x0, x1), s(x0), s(x1))
COND1(true, s(x0), s(x1)) → COND2(gr(x0, x1), s(x0), s(x1))
COND2(true, s(z0), s(z1)) → COND1(true, z0, s(z1))
COND3(false, s(x0), s(s(y_1))) → COND1(true, s(x0), s(y_1))
COND3(true, s(z0), s(z1)) → COND1(true, z0, s(z1))

The TRS R consists of the following rules:

eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)

The set Q consists of the following terms:

gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
By forward instantiating [14] the rule COND3(true, s(z0), s(z1)) → COND1(true, z0, s(z1)) we obtained the following new rules:

COND3(true, s(s(y_0)), s(x1)) → COND1(true, s(y_0), s(x1))



↳ QTRS
  ↳ AAECC Innermost
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Narrowing
                              ↳ QDP
                                ↳ DependencyGraphProof
                                  ↳ QDP
                                    ↳ Narrowing
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Narrowing
                                              ↳ QDP
                                                ↳ DependencyGraphProof
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Narrowing
                                                              ↳ QDP
                                                                ↳ DependencyGraphProof
                                                                  ↳ AND
                                                                    ↳ QDP
                                                                    ↳ QDP
                                                                      ↳ Rewriting
                                                                        ↳ QDP
                                                                          ↳ UsableRulesProof
                                                                            ↳ QDP
                                                                              ↳ QReductionProof
                                                                                ↳ QDP
                                                                                  ↳ Rewriting
                                                                                    ↳ QDP
                                                                                      ↳ Narrowing
                                                                                        ↳ QDP
                                                                                          ↳ DependencyGraphProof
                                                                                            ↳ QDP
                                                                                              ↳ UsableRulesProof
                                                                                                ↳ QDP
                                                                                                  ↳ QReductionProof
                                                                                                    ↳ QDP
                                                                                                      ↳ Instantiation
                                                                                                        ↳ QDP
                                                                                                          ↳ Instantiation
                                                                                                            ↳ QDP
                                                                                                              ↳ DependencyGraphProof
                                                                                                                ↳ AND
                                                                                                                  ↳ QDP
                                                                                                                  ↳ QDP
                                                                                                                    ↳ ForwardInstantiation
                                                                                                                      ↳ QDP
                                                                                                                        ↳ ForwardInstantiation
QDP
                                                                                                                            ↳ ForwardInstantiation

Q DP problem:
The TRS P consists of the following rules:

COND2(false, s(x0), s(x1)) → COND3(eq(x0, x1), s(x0), s(x1))
COND1(true, s(x0), s(x1)) → COND2(gr(x0, x1), s(x0), s(x1))
COND2(true, s(z0), s(z1)) → COND1(true, z0, s(z1))
COND3(false, s(x0), s(s(y_1))) → COND1(true, s(x0), s(y_1))
COND3(true, s(s(y_0)), s(x1)) → COND1(true, s(y_0), s(x1))

The TRS R consists of the following rules:

eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)

The set Q consists of the following terms:

gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
By forward instantiating [14] the rule COND2(false, s(x0), s(x1)) → COND3(eq(x0, x1), s(x0), s(x1)) we obtained the following new rules:

COND2(false, s(s(y_1)), s(x1)) → COND3(eq(s(y_1), x1), s(s(y_1)), s(x1))
COND2(false, s(x0), s(s(y_2))) → COND3(eq(x0, s(y_2)), s(x0), s(s(y_2)))



↳ QTRS
  ↳ AAECC Innermost
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Narrowing
                              ↳ QDP
                                ↳ DependencyGraphProof
                                  ↳ QDP
                                    ↳ Narrowing
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Narrowing
                                              ↳ QDP
                                                ↳ DependencyGraphProof
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Narrowing
                                                              ↳ QDP
                                                                ↳ DependencyGraphProof
                                                                  ↳ AND
                                                                    ↳ QDP
                                                                    ↳ QDP
                                                                      ↳ Rewriting
                                                                        ↳ QDP
                                                                          ↳ UsableRulesProof
                                                                            ↳ QDP
                                                                              ↳ QReductionProof
                                                                                ↳ QDP
                                                                                  ↳ Rewriting
                                                                                    ↳ QDP
                                                                                      ↳ Narrowing
                                                                                        ↳ QDP
                                                                                          ↳ DependencyGraphProof
                                                                                            ↳ QDP
                                                                                              ↳ UsableRulesProof
                                                                                                ↳ QDP
                                                                                                  ↳ QReductionProof
                                                                                                    ↳ QDP
                                                                                                      ↳ Instantiation
                                                                                                        ↳ QDP
                                                                                                          ↳ Instantiation
                                                                                                            ↳ QDP
                                                                                                              ↳ DependencyGraphProof
                                                                                                                ↳ AND
                                                                                                                  ↳ QDP
                                                                                                                  ↳ QDP
                                                                                                                    ↳ ForwardInstantiation
                                                                                                                      ↳ QDP
                                                                                                                        ↳ ForwardInstantiation
                                                                                                                          ↳ QDP
                                                                                                                            ↳ ForwardInstantiation
QDP
                                                                                                                                ↳ ForwardInstantiation

Q DP problem:
The TRS P consists of the following rules:

COND1(true, s(x0), s(x1)) → COND2(gr(x0, x1), s(x0), s(x1))
COND2(false, s(s(y_1)), s(x1)) → COND3(eq(s(y_1), x1), s(s(y_1)), s(x1))
COND2(true, s(z0), s(z1)) → COND1(true, z0, s(z1))
COND2(false, s(x0), s(s(y_2))) → COND3(eq(x0, s(y_2)), s(x0), s(s(y_2)))
COND3(false, s(x0), s(s(y_1))) → COND1(true, s(x0), s(y_1))
COND3(true, s(s(y_0)), s(x1)) → COND1(true, s(y_0), s(x1))

The TRS R consists of the following rules:

eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)

The set Q consists of the following terms:

gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
By forward instantiating [14] the rule COND2(true, s(z0), s(z1)) → COND1(true, z0, s(z1)) we obtained the following new rules:

COND2(true, s(s(y_0)), s(x1)) → COND1(true, s(y_0), s(x1))



↳ QTRS
  ↳ AAECC Innermost
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Narrowing
                              ↳ QDP
                                ↳ DependencyGraphProof
                                  ↳ QDP
                                    ↳ Narrowing
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Narrowing
                                              ↳ QDP
                                                ↳ DependencyGraphProof
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Narrowing
                                                              ↳ QDP
                                                                ↳ DependencyGraphProof
                                                                  ↳ AND
                                                                    ↳ QDP
                                                                    ↳ QDP
                                                                      ↳ Rewriting
                                                                        ↳ QDP
                                                                          ↳ UsableRulesProof
                                                                            ↳ QDP
                                                                              ↳ QReductionProof
                                                                                ↳ QDP
                                                                                  ↳ Rewriting
                                                                                    ↳ QDP
                                                                                      ↳ Narrowing
                                                                                        ↳ QDP
                                                                                          ↳ DependencyGraphProof
                                                                                            ↳ QDP
                                                                                              ↳ UsableRulesProof
                                                                                                ↳ QDP
                                                                                                  ↳ QReductionProof
                                                                                                    ↳ QDP
                                                                                                      ↳ Instantiation
                                                                                                        ↳ QDP
                                                                                                          ↳ Instantiation
                                                                                                            ↳ QDP
                                                                                                              ↳ DependencyGraphProof
                                                                                                                ↳ AND
                                                                                                                  ↳ QDP
                                                                                                                  ↳ QDP
                                                                                                                    ↳ ForwardInstantiation
                                                                                                                      ↳ QDP
                                                                                                                        ↳ ForwardInstantiation
                                                                                                                          ↳ QDP
                                                                                                                            ↳ ForwardInstantiation
                                                                                                                              ↳ QDP
                                                                                                                                ↳ ForwardInstantiation
QDP
                                                                                                                                    ↳ ForwardInstantiation

Q DP problem:
The TRS P consists of the following rules:

COND1(true, s(x0), s(x1)) → COND2(gr(x0, x1), s(x0), s(x1))
COND2(false, s(s(y_1)), s(x1)) → COND3(eq(s(y_1), x1), s(s(y_1)), s(x1))
COND2(false, s(x0), s(s(y_2))) → COND3(eq(x0, s(y_2)), s(x0), s(s(y_2)))
COND3(false, s(x0), s(s(y_1))) → COND1(true, s(x0), s(y_1))
COND3(true, s(s(y_0)), s(x1)) → COND1(true, s(y_0), s(x1))
COND2(true, s(s(y_0)), s(x1)) → COND1(true, s(y_0), s(x1))

The TRS R consists of the following rules:

eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)

The set Q consists of the following terms:

gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
By forward instantiating [14] the rule COND1(true, s(x0), s(x1)) → COND2(gr(x0, x1), s(x0), s(x1)) we obtained the following new rules:

COND1(true, s(s(y_1)), s(x1)) → COND2(gr(s(y_1), x1), s(s(y_1)), s(x1))
COND1(true, s(x0), s(s(y_2))) → COND2(gr(x0, s(y_2)), s(x0), s(s(y_2)))



↳ QTRS
  ↳ AAECC Innermost
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Narrowing
                              ↳ QDP
                                ↳ DependencyGraphProof
                                  ↳ QDP
                                    ↳ Narrowing
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Narrowing
                                              ↳ QDP
                                                ↳ DependencyGraphProof
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Narrowing
                                                              ↳ QDP
                                                                ↳ DependencyGraphProof
                                                                  ↳ AND
                                                                    ↳ QDP
                                                                    ↳ QDP
                                                                      ↳ Rewriting
                                                                        ↳ QDP
                                                                          ↳ UsableRulesProof
                                                                            ↳ QDP
                                                                              ↳ QReductionProof
                                                                                ↳ QDP
                                                                                  ↳ Rewriting
                                                                                    ↳ QDP
                                                                                      ↳ Narrowing
                                                                                        ↳ QDP
                                                                                          ↳ DependencyGraphProof
                                                                                            ↳ QDP
                                                                                              ↳ UsableRulesProof
                                                                                                ↳ QDP
                                                                                                  ↳ QReductionProof
                                                                                                    ↳ QDP
                                                                                                      ↳ Instantiation
                                                                                                        ↳ QDP
                                                                                                          ↳ Instantiation
                                                                                                            ↳ QDP
                                                                                                              ↳ DependencyGraphProof
                                                                                                                ↳ AND
                                                                                                                  ↳ QDP
                                                                                                                  ↳ QDP
                                                                                                                    ↳ ForwardInstantiation
                                                                                                                      ↳ QDP
                                                                                                                        ↳ ForwardInstantiation
                                                                                                                          ↳ QDP
                                                                                                                            ↳ ForwardInstantiation
                                                                                                                              ↳ QDP
                                                                                                                                ↳ ForwardInstantiation
                                                                                                                                  ↳ QDP
                                                                                                                                    ↳ ForwardInstantiation
QDP
                                                                                                                                        ↳ QDPSizeChangeProof

Q DP problem:
The TRS P consists of the following rules:

COND1(true, s(s(y_1)), s(x1)) → COND2(gr(s(y_1), x1), s(s(y_1)), s(x1))
COND2(false, s(s(y_1)), s(x1)) → COND3(eq(s(y_1), x1), s(s(y_1)), s(x1))
COND2(false, s(x0), s(s(y_2))) → COND3(eq(x0, s(y_2)), s(x0), s(s(y_2)))
COND3(false, s(x0), s(s(y_1))) → COND1(true, s(x0), s(y_1))
COND3(true, s(s(y_0)), s(x1)) → COND1(true, s(y_0), s(x1))
COND1(true, s(x0), s(s(y_2))) → COND2(gr(x0, s(y_2)), s(x0), s(s(y_2)))
COND2(true, s(s(y_0)), s(x1)) → COND1(true, s(y_0), s(x1))

The TRS R consists of the following rules:

eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)

The set Q consists of the following terms:

gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs: